Math 117 Fall 2014 Lecture 29 (Oct. 27, 2014)

- Say $f(x)$ is continuous at $a \in \mathbb{R}$ if and only if

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=f(a) . \tag{1}
\end{equation*}
$$

This means
i. $\lim _{x \rightarrow a} f(x)$ exists;
ii. $\lim _{x \rightarrow a} f(x)=f(a)$.

- Therefore $f(x)$ is not continuous at $a \in \mathbb{R}$ means either $\lim _{x \rightarrow a} f(x)$ does not exist, or it exists but is different from $f(a)$.
- $\varepsilon-\delta$ definition for continuity.

Definition 1. $f(x)$ is continuous at $a \in \mathbb{R}$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall|x-a|<\delta, \quad|f(x)-f(a)|<\varepsilon . \tag{2}
\end{equation*}
$$

Exercise 1. Should we require $0<|x-a|<\delta$ instead of $|x-a|<\delta$?

- Say $f(x)$ is left (right) continuous at $a \in \mathbb{R}$ if and only if

$$
\begin{equation*}
\lim _{x \rightarrow a-} f(x)=f(a) \quad\left(\lim _{x \rightarrow a+} f(x)=f(a)\right) . \tag{3}
\end{equation*}
$$

Exercise 2. Write down the $\varepsilon-\delta$ definition for left/right continuity.

- Say $f(x)$ is continuous on $[a, b]$ if and only if
- $\quad f(x)$ is continuous on (a, b);
- $\quad f(x)$ is left continuous at b;
- $\quad f(x)$ is right continuous at a.
- Polynomials are continuous everywhere.
- Building blocks.

Example 2. Let $c \in \mathbb{R}, a \in \mathbb{R}$. Then
a) $f(x) \equiv c$ (the constant function) is continuous at a;
b) $f(x)=x$ is continuous at a.

Proof. We prove by definition.
a) $\forall \varepsilon>0$, take $\delta=2$. Then for every $|x-a|<\delta$, we have $|f(x)-f(a)|=|c-c|=$ $0<\varepsilon$.
b) $\forall \varepsilon>0$, take $\delta=\varepsilon$. Then for every $|x-a|<\delta$, we have $|f(x)-f(a)|=|x-a|<$ $\delta=\varepsilon$.

- Assemblage.

Theorem 3. Let $f(x), g(x)$ be continuous at $a \in \mathbb{R}$. Then so are $(f+g)(x),(f-g)(x)$, $(f g)(x)$.

Proof. We prove the first one and leave the other two as exercises.

By the theorem on limit of sum of functions, the existence of $\lim _{x \rightarrow a}(f+g)(x)$ follows from the existence of $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$, and furthermore the same theorem gives

$$
\begin{equation*}
\lim _{x \rightarrow a}(f+g)(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=f(a)+g(a)=(f+g)(a) \tag{4}
\end{equation*}
$$

Thus ends the proof.

Exercise 3. Prove the following by induction:
Let $a \in \mathbb{R}$ and $P(x)$ be a polynomial. Then $P(x)$ is continuous at a.

- Rational functions.

THEOREM 4. Let $f(x), g(x)$ be continuous at $a \in \mathbb{R}$ and furthermore assume $g(a) \neq 0$. Then $\frac{f}{g}$ is continuous at a.

Proof. As $g(a) \neq 0$, together with continuity of g we have $\lim _{x \rightarrow a} g(x) \neq 0$. Application of the theorem on $\lim _{x \rightarrow a} \frac{f}{g}$ immediately gives the result.
Corollary 5. Let $f(x)=\frac{P(x)}{Q(x)}$ where P, Q are polynomials. Then $f(x)$ is continuous at every $a \in \mathbb{R}$ such that $Q(a) \neq 0$.

Exercise 4. Find $a \in \mathbb{R}$ and P, Q polynomials such that $Q(a)=0, P(a) \neq 0$ and

- $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=+\infty$; or
- $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=-\infty$; or
- $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}$ does not exist.

Justify your claims.
Exercise 5. Let P, Q be polynomials and $a \in \mathbb{R}$. Further assume $P(a) \neq 0, Q(a)=0$. Prove: There is no $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=L$.

