MATH 117 FALL 2014 LECTURE 29 (Oct. 27, 2014)

• Say f(x) is continuous at $a \in \mathbb{R}$ if and only if

$$\lim_{x \to a} f(x) = f(a). \tag{1}$$

This means

- i. $\lim_{x \to a} f(x)$ exists;
- ii. $\lim_{x \to a} f(x) = f(a)$.
- Therefore f(x) is not continuous at $a \in \mathbb{R}$ means either $\lim_{x \to a} f(x)$ does not exist, or it exists but is different from f(a).
- ε - δ definition for continuity.

DEFINITION 1. f(x) is continuous at $a \in \mathbb{R}$ if and only if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall |x - a| < \delta, \qquad |f(x) - f(a)| < \varepsilon.$$
(2)

Exercise 1. Should we require $0 < |x - a| < \delta$ instead of $|x - a| < \delta$?

• Say f(x) is left (right) continuous at $a \in \mathbb{R}$ if and only if

$$\lim_{x \to a^-} f(x) = f(a) \qquad \left(\lim_{x \to a^+} f(x) = f(a)\right). \tag{3}$$

Exercise 2. Write down the ε - δ definition for left/right continuity.

- Say f(x) is continuous on [a, b] if and only if
 - f(x) is continuous on (a, b);
 - \circ f(x) is left continuous at b;
 - \circ f(x) is right continuous at a.
- Polynomials are continuous everywhere.
 - Building blocks.

Example 2. Let $c \in \mathbb{R}$, $a \in \mathbb{R}$. Then

- a) $f(x) \equiv c$ (the constant function) is continuous at a;
- b) f(x) = x is continuous at a.

Proof. We prove by definition.

- a) $\forall \varepsilon > 0$, take $\delta = 2$. Then for every $|x a| < \delta$, we have $|f(x) f(a)| = |c c| = 0 < \varepsilon$.
- b) $\forall \varepsilon > 0$, take $\delta = \varepsilon$. Then for every $|x a| < \delta$, we have $|f(x) f(a)| = |x a| < \delta = \varepsilon$.
- Assemblage.

THEOREM 3. Let f(x), g(x) be continuous at $a \in \mathbb{R}$. Then so are (f+g)(x), (f-g)(x), (fg)(x).

Proof. We prove the first one and leave the other two as exercises.

By the theorem on limit of sum of functions, the existence of $\lim_{x\to a} (f+g)(x)$ follows from the existence of $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$, and furthermore the same theorem gives

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f+g)(a).$$
(4)

Thus ends the proof.

Exercise 3. Prove the following by induction: Let $a \in \mathbb{R}$ and P(x) be a polynomial. Then P(x) is continuous at a.

• Rational functions.

THEOREM 4. Let f(x), g(x) be continuous at $a \in \mathbb{R}$ and furthermore assume $g(a) \neq 0$. Then $\frac{f}{a}$ is continuous at a.

Proof. As $g(a) \neq 0$, together with continuity of g we have $\lim_{x\to a} g(x) \neq 0$. Application of the theorem on $\lim_{x\to a} \frac{f}{g}$ immediately gives the result.

COROLLARY 5. Let $f(x) = \frac{P(x)}{Q(x)}$ where P, Q are polynomials. Then f(x) is continuous at every $a \in \mathbb{R}$ such that $Q(a) \neq 0$.

Exercise 4. Find $a \in \mathbb{R}$ and P, Q polynomials such that $Q(a) = 0, P(a) \neq 0$ and

• $\lim_{x \to a} \frac{P(x)}{Q(x)} = +\infty;$ or

•
$$\lim_{x \to a} \frac{I(x)}{Q(x)} = -\infty$$
; or

$$\circ \quad \lim_{x \to a} \frac{P(x)}{Q(x)} \text{ does not exist.}$$

Justify your claims.

Exercise 5. Let P, Q be polynomials and $a \in \mathbb{R}$. Further assume $P(a) \neq 0, Q(a) = 0$. Prove: There is no $L \in \mathbb{R}$ such that $\lim_{x \to a} \frac{P(x)}{Q(x)} = L$.