Math 117 Fall 2014 Midterm Exam 2

Oct. 24, 2014 10
am - 10:50
am. Total 20+2 $\rm Pts$

NAME:

ID⋕:

- There are five questions.
- Please write clearly and show enough work.

Question 1. (5 pts) Prove by definition:

$$\lim_{x \to 1} x^4 = 1. \tag{1}$$

Proof. Let $\varepsilon > 0$ be arbitrary. Take $\delta = \min \{1, \frac{\varepsilon}{15}\}$. For every $0 < |x - 1| < \delta$, we have |x - 1| < 1 and therefore $|x| \leq 1 + |x - 1| < 2$. Now for such x we have

$$|x^{4} - 1| = |x - 1| |x^{2} + 1| |x + 1| < \delta [|x|^{2} + 1] [|x| + 1] < 15 \,\delta \leqslant \varepsilon.$$

$$\tag{2}$$

Thus ends the proof.

Question 2. (5 pts) Prove by definition:

$$\lim_{n \to \infty} \frac{3^n}{n} = +\infty.$$
(3)

Proof. (Method 1) First prove by induction $\forall n \in \mathbb{N}, n \leq 2^n$.

- n = 1: We have $1 \leq 2^1 = 2$;
- Assume $k \leq 2^k$. Then as $k \geq 1$, we have $\frac{k+1}{k} \leq 2$ and $k+1 = \frac{k+1}{k} \cdot k \leq 2 k \leq 2 \cdot 2^k = 2^{k+1}$.

Now let M>0 be arbitrary. Take $N\in\mathbb{N}$ such that $N>\log_{3/2}M.$ Then for every $n\geqslant N$ we have

$$\frac{3^n}{n} \ge \frac{3^n}{2^n} = \left(\frac{3}{2}\right)^n \ge \left(\frac{3}{2}\right)^N > \left(\frac{3}{2}\right)^{\log_{3/2}M} = M.$$

$$\tag{4}$$

Thus ends the proof.

Proof. (Method 2) First we apply binomial expansion to obtain:

$$3^{n} = (1+2)^{n} = \binom{n}{0} 1^{n} \cdot 2^{0} + \binom{n}{1} 1^{n-1} \cdot 2^{1} + \binom{n}{2} 1^{n-2} \cdot 2^{2} + \dots + \binom{n}{n} 1^{0} \cdot 2^{n} > \binom{n}{2} 1^{n-2} \cdot 2^{2} = 2n (n-1).$$
(5)

Now let M > 0 be arbitrary. Take $N \in \mathbb{N}$ such that $N > \frac{M}{2} + 1$. Then for every $n \ge N$, we have

$$\frac{3^n}{n} > \frac{2n(n-1)}{n} = 2(n-1) \ge 2(N-1) > M.$$
(6)

Thus ends the proof.

Question 3. (5 pts) Let $a_n = (-1)^n - \frac{\sin n^2}{n}$. Calculate $\liminf_{n \to \infty} a_n$ and justify your answer.

Solution. Let

$$m_n := \inf_{k \ge n} a_n = \inf \left\{ (-1)^n - \frac{\sin n^2}{n}, (-1)^{n+1} - \frac{\sin(n+1)^2}{n+1}, \dots \right\}.$$
 (7)

We prove

• $m_n \ge -1 - \frac{1}{n}$. Let $k \ge n$ be arbitrary. We have $(-1)^k \ge -1$, $-\frac{\sin k^2}{k} \ge -\frac{1}{n}$. Therefore $a_k \ge -1 - \frac{1}{n}$. So $-1 - \frac{1}{n}$ is a lower bound for $\left\{(-1)^n - \frac{\sin n^2}{n}, (-1)^{n+1} - \frac{\sin(n+1)^2}{n+1}, \ldots\right\}$ and consequently $m_n \ge -1 - \frac{1}{n}$.

•
$$m_n \leqslant -1 + \frac{1}{n}$$
. We have

$$m_n \leqslant a_{2n+1} = (-1)^{2n+1} - \frac{\sin(2n+1)^2}{(2n+1)} \leqslant -1 + \frac{1}{2n+1} < -1 + \frac{1}{n}.$$
 (8)

• $\lim_{n\to\infty} \left(-1+\frac{1}{n}\right) = -1$. Let $\varepsilon > 0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N > \varepsilon^{-1}$. Then for every $n \ge N$, we have $\left|\left(-1+\frac{1}{n}\right)-(-1)\right| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$.

• Similarly
$$\lim_{n\to\infty} \left(-1-\frac{1}{n}\right) = -1$$

Thus we have $-1 - \frac{1}{n} \leq m_n \leq -1 + \frac{1}{n}$ and $\lim_{n \to \infty} \left(-1 + \frac{1}{n} \right) = -1$, $\lim_{n \to \infty} \left(-1 - \frac{1}{n} \right) = -1$. It now follows from Squeeze that $\lim_{n \to \infty} m_n = -1$ and now by definition $\liminf_{n \to \infty} a_n = -1$.

Question 4. (5 pts) Let $\{a_n\}$ be increasing and not Cauchy. Prove that $\lim_{n\to\infty}a_n=+\infty$.

Proof. We claim that $\{a_n\}$ is not bounded above. Since otherwise $\{a_n\}$ converges and then is Cauchy.

Now we prove $\lim_{n\to\infty} a_n = +\infty$. Let M > 0 be arbitrary. As $\{a_n\}$ is not bounded above, there is $n_0 \in \mathbb{N}$ such that $a_{n_0} > M$. Now set $N = n_0$. Then for every $n \ge N$, we have $a_n \ge a_{n_0} > M$.

Question 5. (Extra 2 pts) Let $f(x), g(x): \mathbb{R} \to \mathbb{R}$ and $a, b, L \in \mathbb{R}$. Assume $\lim_{x \to a} f(x) = b$ and $\lim_{x \to b} g(x) = L$. Prove or disprove: $\lim_{x \to a} g(f(x)) = L$.

Solution. The claim is not true. Consider f(x) = 0 for all x and $g(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$. Now we have

$$\lim_{x \to 0} f(x) = 0, \qquad \lim_{x \to 0} g(x) = 0 \tag{9}$$

but g(f(x)) = g(0) = 1 which means

$$\lim_{x \to 0} g(f(x)) = 1 \neq 0.$$
(10)

This page is blank.