Math 117 Fall 2014 Midterm Exam 2

Oct. 24, 2014 10am - 10:50am. Total $20+2$ Pts

NAME:

ID \#:

- There are five questions.
- Please write clearly and show enough work.

Question 1. (5 pts) Prove by definition:

$$
\begin{equation*}
\lim _{x \rightarrow 1} x^{4}=1 . \tag{1}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be arbitrary. Take $\delta=\min \left\{1, \frac{\varepsilon}{15}\right\}$. For every $0<|x-1|<\delta$, we have $|x-1|<1$ and therefore $|x| \leqslant 1+|x-1|<2$. Now for such x we have

$$
\begin{equation*}
\left|x^{4}-1\right|=|x-1|\left|x^{2}+1\right||x+1|<\delta\left[|x|^{2}+1\right][|x|+1]<15 \delta \leqslant \varepsilon . \tag{2}
\end{equation*}
$$

Thus ends the proof.

Question 2. (5 pts) Prove by definition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{3^{n}}{n}=+\infty \tag{3}
\end{equation*}
$$

Proof. (Method 1) First prove by induction $\forall n \in \mathbb{N}, n \leqslant 2^{n}$.

- $n=1$: We have $1 \leqslant 2^{1}=2$;
- Assume $k \leqslant 2^{k}$. Then as $k \geqslant 1$, we have $\frac{k+1}{k} \leqslant 2$ and $k+1=\frac{k+1}{k} \cdot k \leqslant$ $2 k \leqslant 2 \cdot 2^{k}=2^{k+1}$.

Now let $M>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N>\log _{3 / 2} M$. Then for every $n \geqslant N$ we have

$$
\begin{equation*}
\frac{3^{n}}{n} \geqslant \frac{3^{n}}{2^{n}}=\left(\frac{3}{2}\right)^{n} \geqslant\left(\frac{3}{2}\right)^{N}>\left(\frac{3}{2}\right)^{\log _{3 / 2} M}=M \tag{4}
\end{equation*}
$$

Thus ends the proof.

Proof. (Method 2) First we apply binomial expansion to obtain:
$3^{n}=(1+2)^{n}=\binom{n}{0} 1^{n} \cdot 2^{0}+\binom{n}{1} 1^{n-1} \cdot 2^{1}+\binom{n}{2} 1^{n-2} \cdot 2^{2}+\cdots+\binom{n}{n} 1^{0} \cdot 2^{n}>$
$\binom{n}{2} 1^{n-2} \cdot 2^{2}=2 n(n-1)$.
Now let $M>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N>\frac{M}{2}+1$. Then for every $n \geqslant N$, we have

$$
\begin{equation*}
\frac{3^{n}}{n}>\frac{2 n(n-1)}{n}=2(n-1) \geqslant 2(N-1)>M . \tag{6}
\end{equation*}
$$

Thus ends the proof.

Question 3. (5 pts) Let $a_{n}=(-1)^{n}-\frac{\sin n^{2}}{n}$. Calculate $\liminf _{n \rightarrow \infty} a_{n}$ and justify your answer.

Solution. Let

$$
\begin{equation*}
m_{n}:=\inf _{k \geqslant n} a_{n}=\inf \left\{(-1)^{n}-\frac{\sin n^{2}}{n},(-1)^{n+1}-\frac{\sin (n+1)^{2}}{n+1}, \ldots\right\} . \tag{7}
\end{equation*}
$$

We prove

- $m_{n} \geqslant-1-\frac{1}{n}$. Let $k \geqslant n$ be arbitrary. We have $(-1)^{k} \geqslant-1,-\frac{\sin k^{2}}{k} \geqslant-\frac{1}{n}$. Therefore $a_{k} \geqslant-1-\frac{1}{n}$. So $-1-\frac{1}{n}$ is a lower bound for $\left\{(-1)^{n}-\frac{\sin n^{2}}{n}\right.$, $\left.(-1)^{n+1}-\frac{\sin (n+1)^{2}}{n+1}, \ldots\right\}$ and consequently $m_{n} \geqslant-1-\frac{1}{n}$.
- $m_{n} \leqslant-1+\frac{1}{n}$. We have

$$
\begin{equation*}
m_{n} \leqslant a_{2 n+1}=(-1)^{2 n+1}-\frac{\sin (2 n+1)^{2}}{(2 n+1)} \leqslant-1+\frac{1}{2 n+1}<-1+\frac{1}{n} . \tag{8}
\end{equation*}
$$

- $\lim _{n \rightarrow \infty}\left(-1+\frac{1}{n}\right)=-1$. Let $\varepsilon>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N>\varepsilon^{-1}$. Then for every $n \geqslant N$, we have $\left|\left(-1+\frac{1}{n}\right)-(-1)\right|=\frac{1}{n} \leqslant \frac{1}{N}<\varepsilon$.
- Similarly $\lim _{n \rightarrow \infty}\left(-1-\frac{1}{n}\right)=-1$.

Thus we have $-1-\frac{1}{n} \leqslant m_{n} \leqslant-1+\frac{1}{n}$ and $\lim _{n \rightarrow \infty}\left(-1+\frac{1}{n}\right)=-1, \mathrm{im}_{n \rightarrow \infty}(-$ $\left.1-\frac{1}{n}\right)=-1$. It now follows from Squeeze that $\lim _{n \rightarrow \infty} m_{n}^{n}=-1$ and now by definition $\liminf _{n \rightarrow \infty} a_{n}=-1$.

Question 4. (5 pts) Let $\left\{a_{n}\right\}$ be increasing and not Cauchy. Prove that $\lim _{n \rightarrow \infty} a_{n}=+\infty$.

Proof. We claim that $\left\{a_{n}\right\}$ is not bounded above. Since otherwise $\left\{a_{n}\right\}$ converges and then is Cauchy.

Now we prove $\lim _{n \rightarrow \infty} a_{n}=+\infty$. Let $M>0$ be arbitrary. As $\left\{a_{n}\right\}$ is not bounded above, there is $n_{0} \in \mathbb{N}$ such that $a_{n_{0}}>M$. Now set $N=n_{0}$. Then for every $n \geqslant N$, we have $a_{n} \geqslant a_{n_{0}}>M$.

Question 5. (Extra 2 pts) Let $f(x), g(x): \mathbb{R} \mapsto \mathbb{R}$ and $a, b, L \in \mathbb{R}$. Assume $\lim _{x \rightarrow a} f(x)=b$ and $\lim _{x \rightarrow b} g(x)=L$. Prove or disprove: $\lim _{x \rightarrow a} g(f(x))=L$.

Solution. The claim is not true. Consider $f(x)=0$ for all x and $g(x)=$ $\left\{\begin{array}{ll}0 & x \neq 0 \\ 1 & x=0\end{array}\right\}$. Now we have

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=0, \quad \lim _{x \rightarrow 0} g(x)=0 \tag{9}
\end{equation*}
$$

but $g(f(x))=g(0)=1$ which means

$$
\begin{equation*}
\lim _{x \rightarrow 0} g(f(x))=1 \neq 0 \tag{10}
\end{equation*}
$$

This page is blank.

