Math 117 Fall 2014 Homework 6 Solutions

Due Thursday Oct. 30 3pm in Assignment Box

Question 1. (5 Pts) Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite series. Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \text { converges } \Longrightarrow \quad \lim _{n \rightarrow \infty} a_{n}=0 \tag{1}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be arbitrary. As $\sum_{n=1}^{\infty} a_{n}$ converges, it is Cauchy. Thus there is $N_{1} \in \mathbb{N}$ such that for every $m>n \geqslant N_{1}$,

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} a_{k}\right|<\varepsilon . \tag{2}
\end{equation*}
$$

Now set $N=N_{1}+1$. For every $n \geqslant N$, we have $n>n-1 \geqslant N$ and consequently

$$
\begin{equation*}
\left|a_{n}\right|=\left|\sum_{k=(n-1)+1}^{n} a_{k}\right|<\varepsilon . \tag{3}
\end{equation*}
$$

Thus by definition $\lim _{n \rightarrow \infty} a_{n}=0$.
Question 2. (5 PTS) Let $r, c \in \mathbb{R}$. Prove that $\sum_{n=1}^{\infty} c r^{n}$ converges if and only if $|r|<1$. (You can use the conclusion of Question 1).

Proof. It suffices to prove that $|r|<1 \Longrightarrow$ convergence and $|r| \geqslant 1 \Longrightarrow$ divergence.

- $|r|<1$. We prove $\sum_{n=1}^{\infty} c r^{n}$ is Cauchy. Let $\varepsilon>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $|c||r|^{N}<\varepsilon(1-r)$. Now for every $m>n \geqslant N$, we have

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} a_{k}\right|=\left|c r^{n+1}\right|\left|1+r+\cdots+r^{m-n-1}\right|=\left|c r^{n+1}\right| \frac{\left|1-r^{m-n}\right|}{|1-r|}<\frac{|c||r|^{N}}{1-r}<\varepsilon . \tag{4}
\end{equation*}
$$

Therefore the series converges.

- $|r| \geqslant 1$. We claim that $\lim _{n \rightarrow \infty} c r^{n}=0$ is false in this case. Thus the series diverges following Question 1.

Let $N \in \mathbb{N}$ be arbitrary. Take $n=N \geqslant N$. Then

$$
\begin{equation*}
\left|c r^{n}\right|=|c||r|^{N} \geqslant|c| . \tag{5}
\end{equation*}
$$

Thus $\lim _{n \rightarrow \infty} c r^{n}=0$ is false by definition.
Remark. (To Grader) There is in fact a situation where $|r| \geqslant 1$ but the series is convergent, namely $c=0$. Anyone noticing this should get one extra point.

Question 3. (5 PTS) Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite series. Prove: If there is $b_{n} \geqslant 0$ such that $\sum_{n=1}^{\infty} b_{n}$ converges and $\forall n \in \mathbb{N}\left|a_{n}\right| \leqslant b_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Proof. We prove that $\sum_{n=1}^{\infty} a_{n}$ is Cauchy.

Let $\varepsilon>0$ be arbitrary. As $\sum_{n=1}^{\infty} b_{n}$ is convergent, there is $N_{1} \in \mathbb{N}$ such that $\forall m>n \geqslant N_{1}$, $\left|\sum_{k=n+1}^{m} b_{k}\right|<\varepsilon$. Take $N=N_{1}$. Then for every $m>n \geqslant N$, we have

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} a_{k}\right| \leqslant \sum_{k=n+1}^{m}\left|a_{k}\right| \leqslant \sum_{k=n+1}^{m} b_{k}=\left|\sum_{k=n+1}^{m} b_{k}\right|<\varepsilon . \tag{6}
\end{equation*}
$$

Here we have used triangle inequality and the fact that $b_{k} \geqslant 0$ for all k.
Question 4. (5 pts) Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite series.
a) (2 PTS) If $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges;
b) (2 PTS) If $\liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges;
c) (1 1 PT$)$ Find an infinite series satisfying $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ and also $\liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$.
You don't need to justify your claims.
(You can use the conclusions from Questions 1 - 3)

Solution.

a) We prove that if $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then there is $|r|<1$ and $c>0$ such that $\forall n \in \mathbb{N}$, $\left|a_{n}\right| \leqslant c r^{n}$. Once this is done the convergence follows from Question 3.

We denote $r_{0}:=\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. As $r_{0}<1$, there is $0<r<1$ such that $r>r_{0}$. Now by definition, there is $N \in \mathbb{N}$ such that $\forall n \geqslant N$,

$$
\begin{equation*}
\left|\sup _{k \geqslant n}\left\{\frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\right\}-r_{0}\right|<r-r_{0} . \tag{7}
\end{equation*}
$$

Application of triangle inequality gives
which by definition of sup gives

$$
\begin{equation*}
\sup _{k \geqslant n}\left\{\frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\right\}<r \tag{8}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\forall n \geqslant N \forall k \geqslant n, \quad \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}<r . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\forall n \geqslant N, \quad \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<r \Longrightarrow\left|a_{n+1}\right|<r\left|a_{n}\right| . \tag{10}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\forall k \in \mathbb{N} \quad\left|a_{N+k}\right|<r\left|a_{N+k-1}\right|<r^{2}\left|a_{N+k-2}\right|<\cdots<r^{k}\left|a_{N}\right| . \tag{11}
\end{equation*}
$$

Now set

$$
\begin{equation*}
c:=\max \left\{\frac{\left|a_{1}\right|}{r}, \frac{\left|a_{2}\right|}{r^{2}}, \ldots, \frac{\left|a_{N}\right|}{r^{N}}\right\} . \tag{12}
\end{equation*}
$$

Then by definition of c we have

$$
\begin{equation*}
\forall n \leqslant N, \quad\left|a_{n}\right| \leqslant c r^{n} . \tag{13}
\end{equation*}
$$

On the other hand, for every $n>N$, we have

$$
\begin{equation*}
\left|a_{n}\right|<r^{n-N}\left|a_{N}\right| \leqslant r^{n-N} c r^{N}=c r^{n} . \tag{14}
\end{equation*}
$$

Therefore $\forall n \in \mathbb{N},\left|a_{n}\right|<c r^{n}$ and convergence follows.
b) Denote $r_{0}:=\liminf _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$. By definition there is $N_{1} \in \mathbb{N}$ such that for all $n \geqslant N_{1}$,

$$
\begin{equation*}
\left|\inf _{k \geqslant n}\left\{\frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\right\}-r_{0}\right|<r_{0}-1 . \tag{15}
\end{equation*}
$$

Application of triangle inequality gives

$$
\begin{equation*}
\forall n \geqslant N_{1}, \forall k \geqslant n, \quad \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}>1 \tag{16}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\forall n \geqslant N_{1}, \quad \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>1 . \tag{17}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left|a_{N_{1}}\right|<\left|a_{N_{1}+1}\right|<\left|a_{N_{1}+2}\right|<\cdots . \tag{18}
\end{equation*}
$$

Note that as $\frac{\left|a_{N_{1}+1}\right|}{\left|a_{N_{1}}\right|}$ is well-defined, $a_{N_{1}} \neq 0 \Longrightarrow\left|a_{N_{1}}\right|>0$.
We prove that $\lim _{n \rightarrow \infty} a_{n}=0$ does not hold and divergence then follows. Let $N \in \mathbb{N}$ be arbitrary. Take $n:=\max \left\{N_{1}, N\right\} \geqslant N$. Then we have

$$
\begin{equation*}
\left|a_{n}\right| \geqslant\left|a_{N_{1}}\right|>0 . \tag{19}
\end{equation*}
$$

So by definition $\lim _{n \rightarrow \infty} a_{n}=0$ does not hold.
c) For example $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}=\left\{\begin{array}{ll}\frac{1}{n} & n \text { odd } \\ \frac{2}{n} & n \text { even }\end{array}\right.$.

