MATH 117 FALL 2014 HOMEWORK 6

DUE THURSDAY OCT. 30 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Let $\sum_{n=1}^{\infty} a_n$ be an infinite series. Prove that

$$\sum_{n=1}^{\infty} a_n \text{ converges} \implies \lim_{n \to \infty} a_n = 0.$$
(1)

QUESTION 2. (5 PTS) Let $r, c \in \mathbb{R}$. Prove that $\sum_{n=1}^{\infty} c r^n$ converges if and only if |r| < 1. (You can use the conclusion of Question 1).

QUESTION 3. (5 PTS) Let $\sum_{n=1}^{\infty} a_n$ be an infinite series. Prove: If there is $b_n \ge 0$ such that $\sum_{n=1}^{\infty} b_n$ converges and $\forall n \in \mathbb{N} |a_n| \le b_n$, then $\sum_{n=1}^{\infty} a_n$ converges.

QUESTION 4. (5 PTS) Let $\sum_{n=1}^{\infty} a_n$ be an infinite series.

- a) (2 PTS) If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges;
- b) (2 PTS) If $\operatorname{liminf}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges;
- c) (1 PT) Find an infinite series satisfying $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ and also $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$. You don't need to justify your claims.

(You can use the conclusions from Questions 1 - 3)