MATH 117 FALL 2014 LECTURE 28 (Oct. 23, 2014)

Example 1. Prove $\lim_{x\to 0} (1+x)^{1/3} = 1$.

Solution 1 (Definition). Let $\varepsilon > 0$ be arbitrary. Set $\delta < \min\{1, \varepsilon\}$. Then for every $0 < |x - 0| < \delta$, we have $1 + x \ge 1 - |x| > 1 - \delta > 0$ and therefore

$$\left| (1+x)^{1/3} - 1 \right| = \frac{\left| (1+x) - 1 \right|}{\left| (1+x)^{2/3} + (1+x)^{1/3} + 1 \right|} < \frac{|x|}{1} < \delta < \varepsilon. \tag{1}$$

Solution 2 (Squeeze). For -1 < x < 1 we have

$$1 - |x| \le (1 - |x|)^{1/3} \le (1 + x)^{1/3} \le (1 + |x|)^{1/3} \le 1 + |x|.$$
 (2)

As $\lim_{x\to 0} (1-|x|) = \lim_{x\to 0} (1+|x|) = 0$, the conclusion follows from Squeeze.

Exercise 1. Prove that for every $x \in \mathbb{R}$, $1 - |x| \le 1 + x \le 1 + |x|$.

Exercise 2. Prove by definition $\lim_{x\to 0} (1-|x|) = \lim_{x\to 0} (1+|x|) = 0$.

Exercise 3. We have only proved $1 - |x| \le (1+x)^{1/3} \le 1 + |x|$ for -1 < x < 1, not for all $x \in \mathbb{R}$. Why could we apply Squeeze? Explain.

Example 2. Let $a_n = (-1)^n - e^{-n}$. Calculate $\sup_{n \in \mathbb{N}} a_n$, $\inf_{n \in \mathbb{N}} a_n$, $\limsup_{n \to \infty} a_n$, $\liminf_{n \to \infty} a_n$. Justify.

Solution.

- $\sup_{n \in \mathbb{N}} a_n = 1$.
 - o 1 is an upper bound.

$$\forall n \in \mathbb{N}$$
, we have $a_n = (-1)^n - e^{-n} \le 1 - e^{-n} < 1$.

• 1 is the least upper bound.

 $\forall b < 1$, take $n \in \mathbb{N}$ such that $n > \frac{1}{2} \ln \frac{1}{1-b}$. Then we have $-2 \ n < \ln(1-b) \Longrightarrow e^{-2n} < 1-b$. Thus $a_{2n} = (-1)^{2n} - e^{-2n} = 1 - e^{-2n} > 1 - (1-b) = b$. Therefore b is not an upper bound.

- $\inf_{n \in \mathbb{N}} a_n = -1 e^{-1}$.
 - $\circ \quad -1 e^{-1} \text{ is a lower bound.}$

$$\forall n \in \mathbb{N}$$
, we have $a_n = (-1)^n - e^{-n} \geqslant -1 - e^{-n} \geqslant -1 - e^{-1}$.

 \circ $-1 - e^{-1}$ is the greatest lower bound.

$$\forall b > -1 - e^{-1}$$
, we have $a_1 = -1 - e^{-1} < b$ and thus b is not a lower bound.

• $\limsup_{n\to\infty} a_n$.

Let
$$M_n := \sup_{k \ge n} a_k = \sup \{a_n, a_{n+1}, ...\}.$$

 \circ $M_n \leqslant 1$.

$$\forall k \ge n$$
, we have $a_k = (-1)^k - e^{-k} \le (-1)^k \le 1$.

 $omega M_n \geqslant 1 - e^{-2n}$. It suffices to prove that there is $k \geqslant n$ such that $a_k \geqslant 1 - e^{-2n}$. Taking k = 2n we see that $a_k = 1 - e^{-2n}$.

Therefore $1 - e^{-2n} \le M_n \le 1$ and application of Squeeze leads to $\lim_{n\to\infty} M_n = 1$. Therefore $\limsup_{n\to\infty} a_n = 1$.

• $\liminf_{n\to\infty} a_n$.

Let $m_n := \inf_{k \ge n} a_k = \inf \{a_n, a_{n+1}, ...\}.$

 \circ $m_n \leqslant -1$.

It suffices to find $k \ge n$ such that $a_k \le -1$. Taking k = 2n+1 we have $k \ge n$ and $a_k = (-1)^{2n+1} - e^{-(2n+1)} = -1 - e^{-(2n+1)} < -1$.

 $\circ \quad m_n \geqslant -1 - e^{-n}.$

We show that $-1 - e^{-n}$ is a lower bound for $\{a_n, a_{n+1}, ...\}$. Let $k \ge n$ be arbitrary. Then $a_k = (-1)^k - e^{-k} \ge -1 - e^{-k} \ge -1 - e^{-n}$ (note that $k \ge n$).

Thus $-1 - e^{-n} \le m_n \le -1$ and application of Squeeze leads to $\lim_{n \to \infty} m_n = -1$ which means $\lim_{n \to \infty} a_n = -1$.

Exercise 4. Let $r \in \mathbb{R}$ and $a_n = r^n$. Prove the following.

- a) If |r| < 1 then $\lim_{n \to \infty} a_n = 0$;
- b) If r = 1 then $\lim_{n \to \infty} a_n = 1$;
- c) If r = -1 then $\limsup_{n \to \infty} a_n = 1$, $\liminf_{n \to \infty} a_n = -1$;
- d) If r > 1 then $\lim_{n \to \infty} a_n = +\infty$;
- e) If r < -1 then $\limsup_{n \to \infty} a_n = +\infty$, $\liminf_{n \to \infty} a_n = -\infty$.