Reading:

- When should start writing the proof/solution:
 - After understanding what is going on and why the limit is the given (or guessed) number.
 - One way to check: Can give a quick mental estimate of how small $|a_n a|$ is for say n = 10101, 1010101, etc.

Example 1. Prove $\lim_{n\to\infty} \frac{n-1}{n} = 1$.

Proof. Check readiness: $|a_{10101} - 1| = \frac{1}{10101} \le 10^{-4}$ and $|a_{1010101} - 1| = \frac{1}{1010101} \le 10^{-6}$. So we could start writing the proof.

Example 2. Prove $\lim_{n\to\infty} \frac{3^n}{n!} = 0$.

Proof. Check readiness: $|a_{10101} - 0| = \frac{3 \times 3 \times \cdots \times 3}{10101 \times 10100 \times \cdots \times 1} \leq !#@?$. We need to work a bit more before starting to write the proof. First we know that

$$\frac{3^n}{n!} = \frac{3}{n} \times \frac{3}{n-1} \times \dots \times \frac{3}{1}.$$
(1)

Intuitively we think the limit is zero because $\frac{3}{k}$ is small for large k's. Thus let's try to split the large k's and small k's:

$$\frac{3^{n}}{n!} = \frac{3}{n} \times \dots \times \frac{3}{4} \times \frac{3}{3} \times \frac{3}{2} \times \frac{3}{1} < \left(\frac{3}{4}\right)^{n-3} \times \frac{9}{2}.$$
(2)

Now we see that we can estimate things like $|a_{10101} - 0|$ and ready to prove.

Let $\varepsilon > 0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N > \log_{4/3} \frac{9}{2\varepsilon} + 3$. Then for every $n \ge N$, we have

$$\left|\frac{3^n}{n!} - 0\right| \frac{3}{n} \times \dots \times \frac{3}{4} \times \frac{3}{3} \times \frac{3}{2} \times \frac{3}{1} < \left(\frac{3}{4}\right)^{n-3} \times \frac{9}{2} \le \left(\frac{3}{4}\right)^{N-3} \times \frac{9}{2} < \varepsilon.$$
(3)

Example 3. Prove $\lim_{n\to\infty} \frac{n}{(n^3+2n)^{1/3}} = 1.$

Proof. We try to prove through Squeeze. On one hand clearly $\frac{n}{(n^3+2n)^{1/3}} < \frac{n}{(n^3)^{1/3}} = 1$. On the other hand, $\forall n \in \mathbb{N}, n^3+2n < n^3+3n^2+3n+1 = (n+1)^3$. Therefore $\frac{n}{(n^3+2n)^{1/3}} > \frac{n}{n+1}$. As $\lim_{n\to\infty} 1 = \lim_{n\to\infty} \frac{n}{n+1} = 1$ we conclude from Squeeze that $\lim_{n\to\infty} \frac{n}{(n^3+2n)^{1/3}} = 1$. \Box

- General procedure of proving $\lim_{x\to a} f(x) = L$.
 - For simplicity of presentation we discuss the case $a, L \in \mathbb{R}$ here.
 - Template:

Let $\varepsilon > 0$ be arbitrary. Set $\delta < C$. For every $0 < |x - a| < \delta$, (Now simplify |f(x) - L|):

$$|f(x) - L| < \dots < \dots < M < \dots < B.$$

$$\tag{4}$$

Here each < is some algebraic manipulation to simplify |f(x) - L|. Before A the goal is to "get rid of" all appearances of x, thus A should be a formula involving δ only. From A to B the goal is to simplify this formula of δ as much as possible, so that the inequality $B < \varepsilon$ (keep in mind that B is a formula of δ) is easy to solve. Once $B < \varepsilon$ is solved, we have the formula for C, which should be a formula involving ε .

Example 4. Prove $\lim_{x\to 1} \frac{x^2+1}{x^4+1} = 1$ by definition.

Proof. Let $\varepsilon > 0$ be arbitrary. We simplify as follows. For $0 < |x - 1| < \delta$,

$$\left|\frac{x^2+1}{x^4+1}-1\right| = \left|\frac{x^2-x^4}{x^4+1}\right|$$
(5)

$$\leq |x^2| |1 - x^2| \tag{6}$$

$$(\text{Set } t = x - 1) = |1 + t|^2 |t| |2 + t|$$
(7)

$$< \delta (1+\delta)^2 (2+\delta). \tag{8}$$

Clearly, finding δ such that $\delta (1 + \delta)^2 (2 + \delta)$ is difficult so we try to further simplify. From now on we only consider those $\delta < 1$. For such δ we have

$$\delta \left(1+\delta\right)^2 \left(2+\delta\right) < 12\,\delta.\tag{9}$$

Thus for any $\delta < 1$ to satisfy $\delta (1 + \delta)^2 (2 + \delta) < \varepsilon$, it suffices to require $\delta < \frac{\varepsilon}{12}$. As we are considering only those $\delta < 1$, the final requirement of δ is

$$\delta < \min\left\{1, \frac{\varepsilon}{12}\right\}. \tag{10}$$

Now we finish the proof.

Let $\varepsilon > 0$ be arbitrary. Take $\delta < \min\left\{1, \frac{\varepsilon}{12}\right\}$. Then for every $0 < |x-1| < \delta$, we have

$$\left|\frac{x^2+1}{x^4+1}-1\right| = \left|\frac{x^2-x^4}{x^4+1}\right| \tag{11}$$

$$\leqslant |x^2| |1 - x^2| \tag{12}$$

$$(\text{Set } t = x - 1) = |1 + t|^2 |t| |2 + t|$$
(13)

$$< \delta (1+\delta)^2 (2+\delta) \tag{14}$$

$$< 12\delta < \varepsilon.$$
 (15)

Thus ends the proof.

• A kind of hard problem.

Problem 1. Let $d_n > 0$. Assume $\sum_{n=1}^{\infty} d_n = +\infty$. Assume $\lim_{n \to \infty} a_n = a$ (a could be a real number or $\pm \infty$). Prove or disprove:

$$\lim_{n \to \infty} \frac{d_1 a_1 + \dots + d_n a_n}{d_1 + \dots + d_n} = a.$$

$$(16)$$

Would the conclusion still hold if we instead assume $\sum_{n=1}^{\infty} d_n = D \in \mathbb{R}$?