Math 117 Fall 2014 Lecture 27 (Ост. 22, 2014)

Reading:

- When should start writing the proof/solution:
- After understanding what is going on and why the limit is the given (or guessed) number.
- One way to check: Can give a quick mental estimate of how small $\left|a_{n}-a\right|$ is for say $n=10101$, 1010101, etc.

Example 1. Prove $\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$.
Proof. Check readiness: $\left|a_{10101}-1\right|=\frac{1}{10101} \leqslant 10^{-4}$ and $\left|a_{1010101}-1\right|=\frac{1}{1010101} \leqslant 10^{-6}$. So we could start writing the proof.

Example 2. Prove $\lim _{n \rightarrow \infty} \frac{3^{n}}{n!}=0$.
Proof. Check readiness: $\left|a_{10101}-0\right|=\frac{3 \times 3 \times \cdots \times 3}{10101 \times 10100 \times \cdots \times 1} \leqslant!$! $@$?. We need to work a bit more before starting to write the proof. First we know that

$$
\begin{equation*}
\frac{3^{n}}{n!}=\frac{3}{n} \times \frac{3}{n-1} \times \cdots \times \frac{3}{1} . \tag{1}
\end{equation*}
$$

Intuitively we think the limit is zero because $\frac{3}{k}$ is small for large k 's. Thus let's try to split the large k 's and small k 's:

$$
\begin{equation*}
\frac{3^{n}}{n!}=\frac{3}{n} \times \cdots \times \frac{3}{4} \times \frac{3}{3} \times \frac{3}{2} \times \frac{3}{1}<\left(\frac{3}{4}\right)^{n-3} \times \frac{9}{2} . \tag{2}
\end{equation*}
$$

Now we see that we can estimate things like $\left|a_{10101}-0\right|$ and ready to prove.
Let $\varepsilon>0$ be arbitrary. Take $N \in \mathbb{N}$ such that $N>\log _{4 / 3} \frac{9}{2 \varepsilon}+3$. Then for every $n \geqslant N$, we have

$$
\begin{equation*}
\left|\frac{3^{n}}{n!}-0\right| \frac{3}{n} \times \cdots \times \frac{3}{4} \times \frac{3}{3} \times \frac{3}{2} \times \frac{3}{1}<\left(\frac{3}{4}\right)^{n-3} \times \frac{9}{2} \leqslant\left(\frac{3}{4}\right)^{N-3} \times \frac{9}{2}<\varepsilon . \tag{3}
\end{equation*}
$$

Example 3. Prove $\lim _{n \rightarrow \infty} \frac{n}{\left(n^{3}+2 n\right)^{1 / 3}}=1$.
Proof. We try to prove through Squeeze. On one hand clearly $\frac{n}{\left(n^{3}+2 n\right)^{1 / 3}}<\frac{n}{\left(n^{3}\right)^{1 / 3}}=1$. On the other hand, $\forall n \in \mathbb{N}, n^{3}+2 n<n^{3}+3 n^{2}+3 n+1=(n+1)^{3}$. Therefore $\frac{n}{\left(n^{3}+2 n\right)^{1 / 3}}>\frac{n}{n+1}$. As $\lim _{n \rightarrow \infty} 1=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ we conclude from Squeeze that $\lim _{n \rightarrow \infty} \frac{n}{\left(n^{3}+2 n\right)^{1 / 3}}=1$.

- General procedure of proving $\lim _{x \rightarrow a} f(x)=L$.
- For simplicity of presentation we discuss the case $a, L \in \mathbb{R}$ here.
- Template:

Let $\varepsilon>0$ be arbitrary. Set $\delta<C$. For every $0<|x-a|<\delta$, (Now simplify $|f(x)-L|):$

$$
\begin{equation*}
|f(x)-L|<\cdots<\cdots<\cdots<A<\cdots<B . \tag{4}
\end{equation*}
$$

Here each < is some algebraic manipulation to simplify $|f(x)-L|$. Before A the goal is to "get rid of" all appearances of x, thus A should be a formula involving δ only. From A to B the goal is to simplify this formula of δ as much as possible, so that the inequality $B<\varepsilon$ (keep in mind that B is a formula of δ) is easy to solve. Once $B<\varepsilon$ is solved, we have the formula for C, which should be a formula involving ε.

Example 4. Prove $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x^{4}+1}=1$ by definition.
Proof. Let $\varepsilon>0$ be arbitrary. We simplify as follows. For $0<|x-1|<\delta$,

$$
\begin{align*}
\left|\frac{x^{2}+1}{x^{4}+1}-1\right| & =\left|\frac{x^{2}-x^{4}}{x^{4}+1}\right| \tag{5}\\
& \leqslant\left|x^{2}\right|\left|1-x^{2}\right| \tag{6}\\
(\text { Set } t=x-1) & =|1+t|^{2}|t||2+t| \tag{7}\\
& <\delta(1+\delta)^{2}(2+\delta) . \tag{8}
\end{align*}
$$

Clearly, finding δ such that $\delta(1+\delta)^{2}(2+\delta)$ is difficult so we try to further simplify. From now on we only consider those $\delta<1$. For such δ we have

$$
\begin{equation*}
\delta(1+\delta)^{2}(2+\delta)<12 \delta \tag{9}
\end{equation*}
$$

Thus for any $\delta<1$ to satisfy $\delta(1+\delta)^{2}(2+\delta)<\varepsilon$, it suffices to require $\delta<\frac{\varepsilon}{12}$. As we are considering only those $\delta<1$, the final requirement of δ is

$$
\begin{equation*}
\delta<\min \left\{1, \frac{\varepsilon}{12}\right\} . \tag{10}
\end{equation*}
$$

Now we finish the proof.
Let $\varepsilon>0$ be arbitrary. Take $\delta<\min \left\{1, \frac{\varepsilon}{12}\right\}$. Then for every $0<|x-1|<\delta$, we have

$$
\begin{align*}
\left|\frac{x^{2}+1}{x^{4}+1}-1\right| & =\left|\frac{x^{2}-x^{4}}{x^{4}+1}\right| \tag{11}\\
& \leqslant\left|x^{2}\right|\left|1-x^{2}\right| \tag{12}\\
(\text { Set } t=x-1) & =|1+t|^{2}|t||2+t| \tag{13}\\
& <\delta(1+\delta)^{2}(2+\delta) \tag{14}\\
& <12 \delta<\varepsilon . \tag{15}
\end{align*}
$$

Thus ends the proof.

- A kind of hard problem.

Problem 1. Let $d_{n}>0$. Assume $\sum_{n=1}^{\infty} d_{n}=+\infty$. Assume $\lim _{n \rightarrow \infty} a_{n}=a$ (a could be a real number or $\pm \infty)$. Prove or disprove:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d_{1} a_{1}+\cdots+d_{n} a_{n}}{d_{1}+\cdots+d_{n}}=a \tag{16}
\end{equation*}
$$

Would the conclusion still hold if we instead assume $\sum_{n=1}^{\infty} d_{n}=D \in \mathbb{R}$?

