Reading:

• Recall: For a bounded sequence $\{a_n\}$,

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \left[\sup_{k \ge n} a_k \right]; \qquad \liminf_{n \to \infty} a_n := \lim_{n \to \infty} \left[\inf_{k \ge n} a_k \right]. \tag{1}$$

THEOREM 1. Let $\{a_n\}, \{b_n\}$ be bounded sequences. Then

$$\limsup_{n \to \infty} (a_n + b_n) \leqslant \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$
(2)

Proof. We prove this with two steps.

i. Let $n \in \mathbb{N}$. Then

$$\sup_{k \ge n} (a_n + b_n) \leqslant \sup_{k \ge n} a_k + \sup_{k \ge n} b_k.$$
(3)

To show this it suffices to show $\sup_{k \ge n} a_k + \sup_{k \ge n} b_k$ is an upper bound of the set $\{a_n + b_n, a_{n+1} + b_{n+1}, \ldots\}$. Take an arbitrary a from this set. Then there is $l \ge n$ such that $a = a_l + b_l$. As $a_l \in \{a_n, a_{n+1}, \ldots\}$, $a_l \le \sup_{k \ge n} a_k = \sup\{a_n, a_{n+1}, \ldots\}$. Similarly $b_l \le \sup_{k \ge n} b_k$. Putting things together we have $a \le \sup_{k \ge n} a_k + \sup_{k \ge n} b_k$.

- ii. Now that (3) holds, we take limit $n \to \infty$ and (2) follows from Comparison Theorem. \Box
- **Exercise 1.** Let $\{a_n\}, \{b_n\}$ be bounded sequences. Then

$$\liminf_{n \to \infty} (a_n + b_n) \ge \liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n.$$
(4)

Find an example of $\{a_n\}, \{b_n\}$ such that strict inequality holds.

Exercise 2. Let $\{a_n\}$ be a bounded sequence. Prove

$$\limsup_{n \to \infty} a_n = -\liminf_{n \to \infty} (-a_n).$$
(5)

Exercise 3. Let $\{a_n\}, \{b_n\}$ be bounded sequences. Prove or disprove:

$$\limsup_{n \to \infty} (a_n + b_n) \ge \limsup_{n \to \infty} a_n + \liminf_{n \to \infty} b_n.$$
(6)

Problem 1. Let $\{b_n\}$ be a bounded sequence. Prove or disprove:

$$\lim_{n \to \infty} b_n \text{ exists} \iff \forall \text{ bounded } \{a_n\}, \ \limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \liminf_{n \to \infty} b_n.$$
(7)

Remark 2. Let $\{a_n\}$ be a bounded sequence. Then $\limsup_{n\to\infty} a_n - \liminf_{n\to\infty} a_n$ can be seen as the "eventual magnitude of oscillation" of the sequence.