Math 117 Fall 2014 Lecture 24 (Oct. 16, 2014)

Reading:

- Let $\left\{a_{n}\right\}$ be a bounded sequence. Recall:
- Can define the set of accumulation points:

$$
\begin{equation*}
A\left(\left\{a_{n}\right\}\right):=\left\{a \in \mathbb{R} \mid \exists a_{n_{k}} \longrightarrow a\right\} . \tag{1}
\end{equation*}
$$

- Have seen:

$$
\begin{equation*}
A\left(\left\{(-1)^{n}\right\}\right)=\{1,-1\} ; \quad A(\{\{n \sqrt{2}\}\})=[0,1] . \tag{2}
\end{equation*}
$$

Exercise 1. Let $a_{n}=(-1)^{n}+\{n \sqrt{2}\}$. Find $A\left(\left\{a_{n}\right\}\right)$ and justify.
Exercise 2. Construct a sequence $\left\{a_{n}\right\}$ such that $A\left(\left\{a_{n}\right\}\right)=[0,1] \cup[2,4]$.

- Question: What are sup A and $\inf A$? Can we represent them using a_{n} ?
- Limit superior and Limit inferior.
- Let $\left\{a_{n}\right\}$ be a bounded sequence. Define

$$
\begin{equation*}
M_{n}:=\sup \left\{a_{n}, a_{n+1}, \ldots\right\}, \quad m_{n}:=\inf \left\{a_{n}, a_{n+1}, \ldots\right\} \tag{3}
\end{equation*}
$$

Exercise 3. Prove that $\left\{M_{n}\right\}$ is decreasing and $\left\{m_{n}\right\}$ is increasing.
Define the limit superior of $\left\{a_{n}\right\}$ as

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} M_{n} \tag{4}
\end{equation*}
$$

and the limit inferior of $\left\{a_{n}\right\}$ as

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} m_{n} . \tag{5}
\end{equation*}
$$

Exercise 4. Why do the two limits exist?
Exercise 5. Define $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$ for a sequence $\left\{a_{n}\right\}$ not necessarily bounded.

- Today's main theorem.

Theorem 1. We have

$$
\begin{equation*}
M=\sup A\left(\left\{a_{n}\right\}\right), \quad m=\inf A\left(\left\{a_{n}\right\}\right) . \tag{6}
\end{equation*}
$$

Proof. We prove the first claim and leave the second one as exercise. In the following we simply write A instead of $A\left(\left\{a_{n}\right\}\right)$.

- $\quad M$ is an upper bound for A.

Let $a \in A$ be arbitrary. Then by definition there is a subsequence $\left\{a_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=a$. Now clearly

$$
\begin{equation*}
a_{n_{k}} \leqslant \sup \left\{a_{n_{k}}, a_{n_{k}+1}, a_{n_{k}+2}, \ldots\right\}=M_{n_{k}}, \tag{7}
\end{equation*}
$$

from which it follows $\lim _{k \rightarrow \infty} a_{n_{k}} \leqslant \lim _{k \rightarrow \infty} M_{n_{k}}$, that is $a \leqslant M$.

- $\quad M$ is the least upper bound of A.

Let $m<M$ be arbitrary. Then $\frac{m+M}{2}<M \leqslant M_{n}$ for every $n \in \mathbb{N}$.

- As $\frac{m+M}{2}<M_{1}$, it is not an upper bound of $\left\{a_{1}, a_{2}, \ldots\right\}$. Thus there is $a_{n_{1}} \geqslant \frac{m+M}{2}$;
- As $\frac{m+M}{2}<M_{n_{1}+1}$, it is not an upper bound of $\left\{a_{n_{1}+1}, a_{n_{1}+2}, \ldots\right\}$. Therefore there is $n_{2}>n_{1}$ such that $a_{n_{2}}>\frac{m+M}{2}$;
- Repeating this process we have a subsequence $\left\{a_{n_{k}}\right\}$ such that

$$
\begin{equation*}
\forall k \in \mathbb{N}, \quad a_{n_{k}} \geqslant \frac{m+M}{2} . \tag{8}
\end{equation*}
$$

Now since $\left\{a_{n}\right\}$ is bounded, so is $\left\{a_{n_{k}}\right\}$. Application of Bolzano-Weierstrass gives the existence of a convergent subsequence $\left\{a_{n_{k_{l}}}\right\}$. Set $a:=\lim _{l \rightarrow \infty} a_{n_{k_{l}}}$. Application of comparison now gives

$$
\begin{equation*}
a \geqslant \frac{m+M}{2}>m \tag{9}
\end{equation*}
$$

which means m is not an upper bound of A.
Thus ends the proof.
Corollary 2. Let $\left\{a_{n}\right\}$ be a bounded sequence. Then it converges if and only if $\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}$.

Remark 3. Let $\left\{a_{n}\right\}$ be a bounded sequence. Then its limit superior and limit inferior always exist (in contrast to its limit).

Exercise 6. What happens if $\left\{a_{n}\right\}$ is not bounded? Does the conclusion of the corollary still hold (with appropriate interpretation)?

- Calculating limsup and liminf.

Example 4. Let $a_{n}=(-1)^{n}+\frac{1}{n^{2}}$. Calculate $\limsup _{n \rightarrow \infty} a_{n}$ and justify your answers.
Solution. We have by definition

$$
\begin{equation*}
M_{n}=\sup \left\{(-1)^{n}+\frac{1}{n^{2}},(-1)^{n+1}+\frac{1}{(n+1)^{2}}, \ldots\right\} . \tag{10}
\end{equation*}
$$

As $(-1)^{n}+\frac{1}{n^{2}} \leqslant 1+\frac{1}{n^{2}}$ for every $n, 1+\frac{1}{n^{2}}$ is an upper bound of the set and we have

$$
\begin{equation*}
M_{n} \leqslant 1+\frac{1}{n^{2}} . \tag{11}
\end{equation*}
$$

On the other hand, $1 \leqslant(-1)^{2 n}+\frac{1}{(2 n)^{2}} \in\left\{(-1)^{n}+\frac{1}{n^{2}},(-1)^{n+1}+\frac{1}{(n+1)^{2}}, \ldots\right\}$ which gives

$$
\begin{equation*}
1 \leqslant M_{n} . \tag{12}
\end{equation*}
$$

Therefore $1 \leqslant M_{n} \leqslant 1+\frac{1}{n^{2}}$ and we have $\lim _{n \rightarrow \infty} M_{n}=1$ by Squeeze Theorem.
Remark 5. For this particular example we can actually find M_{n} exactly, as shown below. Note that as all we need is $\lim _{n \rightarrow \infty} M_{n}$, calculating M_{n} exactly is usually not the most efficient way to go.

Recall that $M_{n}:=\sup \left\{a_{n}, a_{n+1}, \ldots\right\}=\sup _{k \geqslant n} a_{k}=\sup _{k \geqslant n}\left\{(-1)^{k}+\frac{1}{k^{2}}\right\}$. We discuss two cases.

- $\quad n$ odd.

In this case we claim that $M_{n}=(-1)^{n+1}+\frac{1}{(n+1)^{2}}=1+\frac{1}{(n+1)^{2}}$. As $1+\frac{1}{(n+1)^{2}} \in\left\{a_{n}, a_{n+1}, \ldots\right\}$, to show it is the supreme we only need to show it is an upper bound. Let $k \geqslant n$ be arbitrary. If k is odd, then

$$
\begin{equation*}
a_{k}=-1+\frac{1}{k^{2}} \leqslant 0 \leqslant 1+\frac{1}{(n+1)^{2}} . \tag{13}
\end{equation*}
$$

If k is even, then $k \geqslant(n+1)$ and

$$
\begin{equation*}
a_{k}=1+\frac{1}{k^{2}} \leqslant 1+\frac{1}{(n+1)^{2}} . \tag{14}
\end{equation*}
$$

Therefore $\forall k \geqslant n, a_{k} \leqslant 1+\frac{1}{(n+1)^{2}}$.

- n even.

In this case we claim that $M_{n}=(-1)^{n}+\frac{1}{n^{2}}=1+\frac{1}{n^{2}}$. Let $k \geqslant n$ be arbitrary. Then we have

$$
\begin{equation*}
a_{k}=(-1)^{k}+\frac{1}{k^{2}} \leqslant 1+\frac{1}{k^{2}} \leqslant 1+\frac{1}{n^{2}} . \tag{15}
\end{equation*}
$$

Therefore $\forall k \geqslant n, a_{k} \leqslant 1+\frac{1}{n^{2}}$.
Exercise 7. Calculate $\liminf _{n \rightarrow \infty} a_{n}$ and justify your answers.
Exercise 8. Calculate $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$ for $a_{n}=(-1)^{n^{2}}-e^{-n}$.

