MATH 117 FALL 2014 LECTURE 24 (Oct. 16, 2014)

Reading:

- Let $\{a_n\}$ be a bounded sequence. Recall:
 - Can define the set of accumulation points:

$$A(\{a_n\}) := \{a \in \mathbb{R} | \exists a_{n_k} \longrightarrow a\}.$$

$$\tag{1}$$

• Have seen:

$$A(\{(-1)^n\}) = \{1, -1\}; \qquad A(\{\{n\sqrt{2}\}\}) = [0, 1].$$
(2)

Exercise 1. Let $a_n = (-1)^n + \{n\sqrt{2}\}$. Find $A(\{a_n\})$ and justify.

Exercise 2. Construct a sequence $\{a_n\}$ such that $A(\{a_n\}) = [0, 1] \cup [2, 4]$.

- Question: What are $\sup A$ and $\inf A$? Can we represent them using a_n ?
- Limit superior and Limit inferior.
 - Let $\{a_n\}$ be a bounded sequence. Define

$$M_n := \sup \{a_n, a_{n+1}, \dots\}, \qquad m_n := \inf \{a_n, a_{n+1}, \dots\}.$$
(3)

Exercise 3. Prove that $\{M_n\}$ is decreasing and $\{m_n\}$ is increasing.

Define the limit superior of $\{a_n\}$ as

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} M_n \tag{4}$$

and the limit inferior of $\{a_n\}$ as

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} m_n. \tag{5}$$

Exercise 4. Why do the two limits exist?

Exercise 5. Define $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$ for a sequence $\{a_n\}$ not necessarily bounded.

• Today's main theorem.

THEOREM 1. We have

$$M = \sup A(\{a_n\}), \qquad m = \inf A(\{a_n\}).$$
(6)

Proof. We prove the first claim and leave the second one as exercise. In the following we simply write A instead of $A(\{a_n\})$.

- M is an upper bound for A.

Let $a \in A$ be arbitrary. Then by definition there is a subsequence $\{a_{n_k}\}$ such that $\lim_{k\to\infty} a_{n_k} = a$. Now clearly

$$a_{n_k} \leqslant \sup \{a_{n_k}, a_{n_k+1}, a_{n_k+2}, \dots\} = M_{n_k},\tag{7}$$

from which it follows $\lim_{k\to\infty} a_{n_k} \leq \lim_{k\to\infty} M_{n_k}$, that is $a \leq M$.

- M is the least upper bound of A. Let m < M be arbitrary. Then $\frac{m+M}{2} < M \leq M_n$ for every $n \in \mathbb{N}$.
 - As $\frac{m+M}{2} < M_1$, it is not an upper bound of $\{a_1, a_2, ...\}$. Thus there is $a_{n_1} \ge \frac{m+M}{2}$;

- As $\frac{m+M}{2} < M_{n_1+1}$, it is not an upper bound of $\{a_{n_1+1}, a_{n_1+2}, \ldots\}$. Therefore there is $n_2 > n_1$ such that $a_{n_2} > \frac{m+M}{2}$;
- Repeating this process we have a subsequence $\{a_{n_k}\}$ such that

$$\forall k \in \mathbb{N}, \qquad a_{n_k} \geqslant \frac{m+M}{2}. \tag{8}$$

Now since $\{a_n\}$ is bounded, so is $\{a_{n_k}\}$. Application of Bolzano-Weierstrass gives the existence of a convergent subsequence $\{a_{n_{k_l}}\}$. Set $a := \lim_{l \to \infty} a_{n_{k_l}}$. Application of comparison now gives

$$a \geqslant \frac{m+M}{2} > m \tag{9}$$

which means m is not an upper bound of A.

Thus ends the proof.

COROLLARY 2. Let $\{a_n\}$ be a bounded sequence. Then it converges if and only if $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n$.

Remark 3. Let $\{a_n\}$ be a bounded sequence. Then its limit superior and limit inferior always exist (in contrast to its limit).

Exercise 6. What happens if $\{a_n\}$ is not bounded? Does the conclusion of the corollary still hold (with appropriate interpretation)?

• Calculating limsup and liminf.

Example 4. Let $a_n = (-1)^n + \frac{1}{n^2}$. Calculate $\limsup_{n \to \infty} a_n$ and justify your answers. **Solution.** We have by definition

$$M_n = \sup\left\{(-1)^n + \frac{1}{n^2}, (-1)^{n+1} + \frac{1}{(n+1)^2}, \dots\right\}.$$
(10)

As $(-1)^n + \frac{1}{n^2} \leqslant 1 + \frac{1}{n^2}$ for every $n, 1 + \frac{1}{n^2}$ is an upper bound of the set and we have

$$M_n \leqslant 1 + \frac{1}{n^2}.\tag{11}$$

On the other hand, $1 \leq (-1)^{2n} + \frac{1}{(2n)^2} \in \left\{ (-1)^n + \frac{1}{n^2}, (-1)^{n+1} + \frac{1}{(n+1)^2}, \dots \right\}$ which gives

$$1 \leqslant M_n. \tag{12}$$

Therefore $1 \leq M_n \leq 1 + \frac{1}{n^2}$ and we have $\lim_{n \to \infty} M_n = 1$ by Squeeze Theorem.

Remark 5. For this particular example we can actually find M_n exactly, as shown below. Note that as all we need is $\lim_{n\to\infty} M_n$, calculating M_n exactly is usually not the most efficient way to go.

Recall that M_n :=sup $\{a_n, a_{n+1}, \ldots\}$ =sup $_{k \ge n} a_k$ =sup $_{k \ge n} \left\{(-1)^k + \frac{1}{k^2}\right\}$. We discuss two cases.

- *n* odd.

In this case we claim that $M_n = (-1)^{n+1} + \frac{1}{(n+1)^2} = 1 + \frac{1}{(n+1)^2}$. As $1 + \frac{1}{(n+1)^2} \in \{a_n, a_{n+1}, \ldots\}$, to show it is the supreme we only need to show it is an upper bound. Let $k \ge n$ be arbitrary. If k is odd, then

$$a_k = -1 + \frac{1}{k^2} \leqslant 0 \leqslant 1 + \frac{1}{(n+1)^2}.$$
(13)

If k is even, then $k \ge (n+1)$ and

$$a_k = 1 + \frac{1}{k^2} \leqslant 1 + \frac{1}{(n+1)^2}.$$
(14)

Therefore $\forall k \ge n, \ a_k \le 1 + \frac{1}{(n+1)^2}$.

- *n* even.

In this case we claim that $M_n = (-1)^n + \frac{1}{n^2} = 1 + \frac{1}{n^2}$. Let $k \ge n$ be arbitrary. Then we have

$$a_k = (-1)^k + \frac{1}{k^2} \leqslant 1 + \frac{1}{k^2} \leqslant 1 + \frac{1}{n^2}.$$
(15)

Therefore $\forall k \ge n, a_k \le 1 + \frac{1}{n^2}$.

Exercise 7. Calculate $\liminf_{n\to\infty} a_n$ and justify your answers.

Exercise 8. Calculate $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$ for $a_n = (-1)^{n^2} - e^{-n}$.