
Math 117 Fall 2014 Lecture 23 (Oct. 15, 2014)

Reading:

� Let fang be a sequence. Recall:

� If fang converges, then fang is bounded. Note that limn!1an=�1 are called �fang
diverges to +1/¡1.�

� If fang is bounded, then it has a convergent subsequence.

The second fact is one of the most important in the whole �eld of analysis. Thus it deserves
a name:

Theorem 1. (Bolzano-Weierstrass) Let fang be a sequence. If fang is bounded, then
it has a convergent subsequence.

� Let fang be a sequence. De�ne the set of its �accumulation points�

A(fang) := fa2RjThere is a subsequence of fang converging to ag: (1)

Then the question comes: What does A look like?

� Convergent sequences.

Theorem 2. Let fang be a bounded sequence. Then it is convergent if and only if A(fang)
consists of exactly one number.

Proof. The �only if� part follows immediately from the fact that if limn!1an = a then
everyone of its subsequences also converges to a.

Now we prove the �if� part. Let A(fang) = fag consist of exactly one number. Assume
that limn!1an = a does not hold. This means there is "0 > 0 such that 8N 2 N there is
n>N such that jan¡ aj> "0. These an's form a subsequence, denote it by fankg. Now as
fang is bounded, so is fankg. By Bolzano-Weierstrass we know that there is a convergent
subsequence

�
ankl

	
. Let b:=liml!1ankl. As 8l2N,

��ankl¡a��> "0, we have b=/ a. This leads
to the following contradiction: b2A(fang)= fag but b=/ a. �

Exercise 1. Prove that a subsequence of a subsequence of fang is again a subsequence of fang.

Exercise 2. Let fang be bounded. Let fankg be a subsequence of fang. Prove that fankg is also bounded.

� Two examples.

Example 3. an=(¡1)n.
We claim that A(fang)= f1;¡1g and prove this as follows.

� f1; ¡1g � A(fang). Set nk = 2 k. We have ank = 1 for all k 2 N and therefore
limk!1ank=1 and consequently 12A(fang). Similarly we can prove ¡12A(fang).
Thus f1;¡1g�A(fang).

� A(fang)�f1;¡1g. Let b=/ 1;¡1 be arbitrary, we prove b2/A(fang). More speci�cally,
let fankg be an arbitrary subsequence, we prove limk!1ank= b cannot hold.

Let "0 =min fjb ¡ 1j; jb + 1jg. Let K 2N be arbitrary. Take a k > K. We have
ank= either 1 or ¡1. Therefore

jank¡ bj> "0: (2)

So limk!1ank= b cannot hold.



Exercise 3. Recall the working negation of �limn!1an= a� and see how it is used in the above proof.

Exercise 4. Let an=(¡1)n+ e¡n. Find A(fang) and justify.

Example 4. an=
�
n 2
p 	

where fxg is the fractional part of x, that is x= fxg+ n where

n is the largest integer no bigger than x. For example
n
3

2

o
= 1

2
,
�

2
p 	

= 2
p
¡ 1.

We claim that A(fang)= [0; 1]. The proof is divided into the following steps.

1. 8n2N, an> 0. Assume there is n02N such that an0=0. Then we have m2N such
that n0 2

p
=m=) 2

p
2Q. Contradiction.

2. Let b 2 [0; 1]; b=/ 0 be arbitrary. Assume there is ank ¡! 0, then there is amk ¡! b.
We prove this by the following construction: Let m1=1. For each l2N, l >1, we �nd
ml>ml¡1 such that jaml¡ bj<

1

l
.

First note that ja1¡ bj< 1

1
is satis�ed as a1=/ 0. Now we �nd aml successively as

follows. Assume m1<m2< ���<ml¡1 has already been found.
Since ank¡! 0, there is k02N, k0>ml¡1 such that ank0<

1

l
. Now de�ne

r0 :=max
�
r 2Nj r ank0< 1

	
: (3)

Consider the points ank0;2 ank0; :::; r0 ank0. They divide [0;1] into r0+1 intervals with

each interval shorter than 1

l
. As bmust belong to one of them, there is s02f1;2; :::; r0g

such that ��s0 ank0¡ b��< 1
l
: (4)

Now we take ml := s0nk0. As s0 ank02 (0; 1) there holds aml= as0nk0= s0 ank0 and the
proof ends.

3. Now we prove there is ank¡!0. This is equivalent to the claim infn2Nan=0. Assume
the contrary. Then �0 := infn2N fang> 0. By de�nition of inf , there is n0 2N such
that an02 [�0; 2 �0). Now let

k0 :=maxfk2Nj k an0< 1g: (5)

We see that there must hold k0 an0< 1< (k0+ 1) an0. As (k0+ 1) an0¡ k0 an0< 2 �0
either (k0+1) an0¡ 1<�0 or 1¡ k0 an0<�0.

� Case (k0+1) an0¡ 1<�0. We have a(k0+1)n0=(k0+1) an0¡1<�0= infn2Nan.
Contradiction.

� Case 1¡k0 an0<�0. In this case let r0 :=maxfr2Nj r (1¡ k0 an0)< 1g. Then
we have

r0 (1¡ k0 an0)< 1< (r0+1) (1¡ k0 an0) (6)
which gives

r0¡ 1<r0 k0 an0< (r0¡ 1)+ (1¡ k0 an0)< (r0¡ 1)+ �0 (7)

which in turn gives
ar0k0n0= fr0 k0 an0g<�0: (8)

Contradiction again.

Exercise 5. Prove that 8n; k 2N; fnakg= ank.

Exercise 6. Prove the equivalence between there is ank¡! 0 and infn2Nan=0.

Problem 1. Prove that A(fsin ng)= [¡1; 1].
Problem 2. Calculate A(fe¡n+ sin ng). Justify.
Problem 3. Calculate A(f(¡1)n+ sin ng). Justify.
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