MATH 117 FALL 2014 LECTURE 23 (Oct. 15, 2014)

Reading:

- Let $\{a_n\}$ be a sequence. Recall:
 - If $\{a_n\}$ converges, then $\{a_n\}$ is bounded. Note that $\lim_{n\to\infty} a_n = \pm \infty$ are called " $\{a_n\}$ diverges to $+\infty/-\infty$."
 - If $\{a_n\}$ is bounded, then it has a convergent subsequence.

The second fact is one of the most important in the whole field of analysis. Thus it deserves a name:

THEOREM 1. (BOLZANO-WEIERSTRASS) Let $\{a_n\}$ be a sequence. If $\{a_n\}$ is bounded, then it has a convergent subsequence.

• Let $\{a_n\}$ be a sequence. Define the set of its "accumulation points"

$$A(\{a_n\}) := \{a \in \mathbb{R} | \text{ There is a subsequence of } \{a_n\} \text{ converging to } a\}.$$
(1)

Then the question comes: What does A look like?

• Convergent sequences.

THEOREM 2. Let $\{a_n\}$ be a bounded sequence. Then it is convergent if and only if $A(\{a_n\})$ consists of exactly one number.

Proof. The "only if" part follows immediately from the fact that if $\lim_{n\to\infty} a_n = a$ then everyone of its subsequences also converges to a.

Now we prove the "if" part. Let $A(\{a_n\}) = \{a\}$ consist of exactly one number. Assume that $\lim_{n\to\infty} a_n = a$ does not hold. This means there is $\varepsilon_0 > 0$ such that $\forall N \in \mathbb{N}$ there is $n \ge N$ such that $|a_n - a| \ge \varepsilon_0$. These a_n 's form a subsequence, denote it by $\{a_{n_k}\}$. Now as $\{a_n\}$ is bounded, so is $\{a_{n_k}\}$. By Bolzano-Weierstrass we know that there is a convergent subsequence $\{a_{n_{k_l}}\}$. Let $b := \lim_{l\to\infty} a_{n_{k_l}}$. As $\forall l \in \mathbb{N}$, $|a_{n_{k_l}} - a| \ge \varepsilon_0$, we have $b \ne a$. This leads to the following contradiction: $b \in A(\{a_n\}) = \{a\}$ but $b \ne a$.

Exercise 1. Prove that a subsequence of a subsequence of $\{a_n\}$ is again a subsequence of $\{a_n\}$.

Exercise 2. Let $\{a_n\}$ be bounded. Let $\{a_{n_k}\}$ be a subsequence of $\{a_n\}$. Prove that $\{a_{n_k}\}$ is also bounded.

• Two examples.

Example 3. $a_n = (-1)^n$. We claim that $A(\{a_n\}) = \{1, -1\}$ and prove this as follows.

- {1, -1} ⊆ $A(\{a_n\})$. Set $n_k = 2$ k. We have $a_{n_k} = 1$ for all $k \in \mathbb{N}$ and therefore $\lim_{k\to\infty}a_{n_k}=1$ and consequently $1 \in A(\{a_n\})$. Similarly we can prove $-1 \in A(\{a_n\})$. Thus $\{1, -1\} \subseteq A(\{a_n\})$.
- $A(\{a_n\}) \subseteq \{1, -1\}$. Let $b \neq 1, -1$ be arbitrary, we prove $b \notin A(\{a_n\})$. More specifically, let $\{a_{n_k}\}$ be an arbitrary subsequence, we prove $\lim_{k\to\infty} a_{n_k} = b$ cannot hold.

Let $\varepsilon_0 = \min\{|b-1|, |b+1|\}$. Let $K \in \mathbb{N}$ be arbitrary. Take a k > K. We have $a_{n_k} =$ either 1 or -1. Therefore

$$|a_{n_k} - b| \geqslant \varepsilon_0. \tag{2}$$

So $\lim_{k\to\infty} a_{n_k} = b$ cannot hold.

Exercise 3. Recall the working negation of " $\lim_{n\to\infty} a_n = a$ " and see how it is used in the above proof. **Exercise 4.** Let $a_n = (-1)^n + e^{-n}$. Find $A(\{a_n\})$ and justify.

Example 4. $a_n = \{n\sqrt{2}\}$ where $\{x\}$ is the fractional part of x, that is $x = \{x\} + n$ where n is the largest integer no bigger than x. For example $\{\frac{3}{2}\} = \frac{1}{2}, \{\sqrt{2}\} = \sqrt{2} - 1.$

- We claim that $A(\{a_n\}) = [0, 1]$. The proof is divided into the following steps.
- 1. $\forall n \in \mathbb{N}, a_n > 0$. Assume there is $n_0 \in \mathbb{N}$ such that $a_{n_0} = 0$. Then we have $m \in \mathbb{N}$ such that $n_0 \sqrt{2} = m \Longrightarrow \sqrt{2} \in \mathbb{Q}$. Contradiction.
- 2. Let $b \in [0, 1], b \neq 0$ be arbitrary. Assume there is $a_{n_k} \longrightarrow 0$, then there is $a_{m_k} \longrightarrow b$. We prove this by the following construction: Let $m_1 = 1$. For each $l \in \mathbb{N}, l > 1$, we find $m_l > m_{l-1}$ such that $|a_{m_l} - b| < \frac{1}{l}$.

First note that $|a_1 - b| < \frac{1}{1}$ is satisfied as $a_1 \neq 0$. Now we find a_{m_l} successively as follows. Assume $m_1 < m_2 < \cdots < m_{l-1}$ has already been found.

Since $a_{n_k} \longrightarrow 0$, there is $k_0 \in \mathbb{N}$, $k_0 > m_{l-1}$ such that $a_{n_{k_0}} < \frac{1}{l}$. Now define

$$r_0 := \max \left\{ r \in \mathbb{N} | r \, a_{n_{k_0}} < 1 \right\}. \tag{3}$$

Consider the points $a_{n_{k_0}}, 2 a_{n_{k_0}}, ..., r_0 a_{n_{k_0}}$. They divide [0, 1] into $r_0 + 1$ intervals with each interval shorter than $\frac{1}{l}$. As b must belong to one of them, there is $s_0 \in \{1, 2, ..., r_0\}$ such that

$$|s_0 a_{n_{k_0}} - b| < \frac{1}{l}.$$
(4)

Now we take $m_l := s_0 n_{k_0}$. As $s_0 a_{n_{k_0}} \in (0, 1)$ there holds $a_{m_l} = a_{s_0 n_{k_0}} = s_0 a_{n_{k_0}}$ and the proof ends.

3. Now we prove there is $a_{n_k} \longrightarrow 0$. This is equivalent to the claim $\inf_{n \in \mathbb{N}} a_n = 0$. Assume the contrary. Then $\delta_0 := \inf_{n \in \mathbb{N}} \{a_n\} > 0$. By definition of \inf , there is $n_0 \in \mathbb{N}$ such that $a_{n_0} \in [\delta_0, 2\delta_0)$. Now let

$$k_0 := \max\{k \in \mathbb{N} \mid k \, a_{n_0} < 1\}. \tag{5}$$

We see that there must hold $k_0 a_{n_0} < 1 < (k_0 + 1) a_{n_0}$. As $(k_0 + 1) a_{n_0} - k_0 a_{n_0} < 2 \delta_0$ either $(k_0 + 1) a_{n_0} - 1 < \delta_0$ or $1 - k_0 a_{n_0} < \delta_0$.

- Case $(k_0+1) a_{n_0} 1 < \delta_0$. We have $a_{(k_0+1)n_0} = (k_0+1) a_{n_0} 1 < \delta_0 = \inf_{n \in \mathbb{N}} a_n$. Contradiction.
- Case $1 k_0 a_{n_0} < \delta_0$. In this case let $r_0 := \max \{r \in \mathbb{N} | r (1 k_0 a_{n_0}) < 1\}$. Then we have

$$r_0 \left(1 - k_0 a_{n_0}\right) < 1 < (r_0 + 1) \left(1 - k_0 a_{n_0}\right) \tag{6}$$

which gives

$$r_0 - 1 < r_0 k_0 a_{n_0} < (r_0 - 1) + (1 - k_0 a_{n_0}) < (r_0 - 1) + \delta_0$$
(7)

which in turn gives

$$a_{r_0k_0n_0} = \{r_0 \, k_0 \, a_{n_0}\} < \delta_0. \tag{8}$$

Contradiction again.

Exercise 5. Prove that $\forall n, k \in \mathbb{N}, \{n a_k\} = a_{nk}$.

Exercise 6. Prove the equivalence between there is $a_{n_k} \longrightarrow 0$ and $\inf_{n \in \mathbb{N}} a_n = 0$.

Problem 1. Prove that $A(\{\sin n\}) = [-1, 1]$.

- **Problem 2.** Calculate $A(\{e^{-n} + \sin n\})$. Justify.
- **Problem 3.** Calculate $A(\{(-1)^n + \sin n\})$. Justify.