Math 117 Fall 2014 Lecture 22 (Осt. 10, 2014)

Reading: Bowman §3.D; 314 Limit \& Continuity $\S 3$.

- Function limit and sequence limit.

Theorem 1. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ and $a, L \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if for every sequence $\left\{x_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=a$ and $\forall n \in \mathbb{N}, x_{n} \neq a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof. We first prove "only if" then prove "if".

- "Only if". Assume $\lim _{x \rightarrow a} f(x)=L$. Let $\left\{x_{n}\right\}$ be an arbitrary sequence satisfying the conditions. Let $\varepsilon>0$ be arbitrary.

As $\lim _{x \rightarrow a} f(x)=L$, there is $\delta>0$ such that for every $0<|x-a|<\delta,|f(x)-L|<\varepsilon ;$
As $\lim _{n \rightarrow \infty} x_{n}=a$, there is $N \in \mathbb{N}$ such that for every $n \geqslant N,\left|x_{n}-a\right|<\delta$;
As $\forall n \in \mathbb{N}, x_{n} \neq a$, there holds for every $n, 0<\left|x_{n}-a\right|$.
Summarizing, we see that for every $n \geqslant N$, we have $0<\left|x_{n}-a\right|<\delta$ which yields $\left|f\left(x_{n}\right)-L\right|<\varepsilon$. Thus ends the proof for "Only if".

- "If'. Assume that for every sequence $\left\{x_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=a$ and $\forall n \in \mathbb{N}, x_{n} \neq a$, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. We prove $\lim _{x \rightarrow a} f(x)=L$ through proof by contradiction.

Assume the contrary. Then there is $\varepsilon>0$ such that $\forall \delta>0$, there is $0<|x-a|<\delta$ satisfying $|f(x)-L| \geqslant \varepsilon$.

Take $\delta_{1}=1$. Then there is x_{1} satisfying $0<\left|x_{1}-a\right|<1$ with $\left|f\left(x_{1}\right)-L\right| \geqslant \varepsilon$.
Take $\delta_{2}=\min \left\{\frac{1}{2},\left|x_{1}-a\right|\right\}$. Then there is x_{2} satisfying $0<\left|x_{2}-a\right|<\delta_{2} \leqslant \frac{1}{2}$ with $\left|f\left(x_{2}\right)-L\right| \geqslant \varepsilon$.

Repeating this we obtain a sequence $\left\{x_{n}\right\}$ satisfying $0<\left|x_{n}-a\right|<\frac{1}{n}$ and $\mid f\left(x_{n}\right)-$ $L \mid \geqslant \varepsilon$ for every $n \in \mathbb{N}$.

As $0<\left|x_{n}-a\right|$ we see that $\forall n \in \mathbb{N}, x_{n} \neq a$;
As $\left|x_{n}-a\right|<\frac{1}{n}$ we have $-\frac{1}{n}<x_{n}-a<\frac{1}{n}$ which yields $\lim _{n \rightarrow \infty} x_{n}=a$ thanks to Squeeze Theorem;

Now we prove that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ does not hold. We still use the above particular ε. Let $N \in \mathbb{N}$ be arbitrary. Take $n=N+1$. Then we have $n \geqslant N$ and $\left|f\left(x_{n}\right)-L\right| \geqslant \varepsilon$.

Theorem 1 has the following variant where the limit L does not appear explicitly.
Theorem 2. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)$ exists if and only if for every sequence $\left\{x_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=a$ and $\forall n \in \mathbb{N}, x_{n} \neq a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.

Problem 1. Prove Theorem Theorem 2.
Exercise 1. Does the conclusion of Theorem 2 still holds if we replace " $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists" by " $\left\{f\left(x_{n}\right)\right\}$ is Cauchy"?
Exercise 2. Generalize the Theorems 1 and 2 to the situation $f(x): A \mapsto \mathbb{R}$ and then prove the generalized version.
Exercise 3. Do the Theorems 1 and 2 still hold if $a= \pm \infty$ or $L= \pm \infty$? Justify your answers.

- The following variant of Theorem 1 is especially convenient in the proof of nonexistence of $\lim _{x \rightarrow a} f(x)$.

Theorem 3. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)$ does not exist if and only if there are two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$ and $\forall n \in \mathbb{N}, x_{n} \neq a, y_{n} \neq a$, but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L_{1} \neq L_{2}=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$.

Exercise 4. Prove Theorem 3.
Example 4. Let $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x \leqslant 0\end{array}\right.$. Prove that $\lim _{x \rightarrow 0} f(x)$ does not exist.
Proof. Take $x_{n}=\frac{1}{n}$ and $y_{n}=-\frac{1}{n}$. Then we have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=0, x_{n} \neq 0$, $y_{n} \neq 0$ but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} 1=1 \neq 0=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$. Thus ends the proof.

- Left/right limits.

Definition 5. (Left Limit) Let $f: \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. We say $f(x)$ has left limit L at a if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall a-\delta<x<a, \quad|f(x)-L|<\varepsilon \tag{1}
\end{equation*}
$$

Exercise 5. Define "Right Limit". (Ans: ${ }^{1}$)
Notation 6. We write

$$
\begin{equation*}
\lim _{x \rightarrow a-} f(x)=L, \quad \lim _{x \rightarrow a+} f(x)=L \tag{2}
\end{equation*}
$$

for left/right limits respectively.
Theorem 7. Let $f: \mathbb{R} \mapsto \mathbb{R}$. a, $L \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a-} f(x)=$ $\lim _{x \rightarrow a+} f(x)=L$.

Proof. We prove "If" then "Only if".

- If. Let $\varepsilon>0$ be arbitrary. As $\lim _{x \rightarrow a-} f(x)=L$ there is $\delta_{L}>0$ such that when $a-\delta_{L}<x<a$ we have $|f(x)-L|<\varepsilon$;

As $\lim _{x \rightarrow a+} f(x)=L$ there is $\delta_{R}>0$ such that when $a<x<a+\delta_{R},|f(x)-L|<\varepsilon$.
Set $\delta=\min \left\{\delta_{L}, \delta_{R}\right\}$. Then for every $0<|x-a|<\delta$, either $a-\delta_{L} \leqslant a-\delta<x<a$ or $a<x<a+\delta \leqslant a+\delta_{R}$. Either case leads to $|f(x)-L|<\varepsilon$.

- Only if. We prove $\lim _{x \rightarrow a-} f(x)=L$ and leave the proof of $\lim _{x \rightarrow a+} f(x)=L$ as exercise as it is almost identical to the left limit proof.

Let $\varepsilon>0$ be arbitrary. As $\lim _{x \rightarrow a} f(x)=L$ there is $\delta_{0}>0$ such that $0<|x-a|<\delta_{0}$ implies $|f(x)-L|<\varepsilon$. Now take $\delta=\delta_{0}$. For every $a-\delta<x<a$ we have $|x-a|=a-x<\delta=\delta_{0}$ which means $0<|x-a|<\delta_{0}$ and consequently $|f(x)-L|<\varepsilon$. Therefore $\lim _{x \rightarrow a-} f(x)=L$.

