MATH 117 FALL 2014 LECTURE 22 (Oct. 10, 2014)

Reading: Bowman §3.D; 314 Limit & Continuity §3.

• Function limit and sequence limit.

THEOREM 1. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ and $a, L \in \mathbb{R}$. Then $\lim_{x \to a} f(x) = L$ if and only if for every sequence $\{x_n\}$ satisfying $\lim_{n \to \infty} x_n = a$ and $\forall n \in \mathbb{N}, x_n \neq a, \lim_{n \to \infty} f(x_n) = L$.

Proof. We first prove "only if" then prove "if".

• "Only if". Assume $\lim_{x\to a} f(x) = L$. Let $\{x_n\}$ be an arbitrary sequence satisfying the conditions. Let $\varepsilon > 0$ be arbitrary.

As $\lim_{x\to a} f(x) = L$, there is $\delta > 0$ such that for every $0 < |x-a| < \delta$, $|f(x) - L| < \varepsilon$; As $\lim_{n\to\infty} x_n = a$, there is $N \in \mathbb{N}$ such that for every $n \ge N$, $|x_n - a| < \delta$; As $\forall n \in \mathbb{N}, x_n \neq a$, there holds for every $n, 0 < |x_n - a|$.

Summarizing, we see that for every $n \ge N$, we have $0 < |x_n - a| < \delta$ which yields $|f(x_n) - L| < \varepsilon$. Thus ends the proof for "Only if".

• "If'. Assume that for every sequence $\{x_n\}$ satisfying $\lim_{n\to\infty} x_n = a$ and $\forall n \in \mathbb{N}, x_n \neq a$, $\lim_{n\to\infty} f(x_n) = L$. We prove $\lim_{x\to a} f(x) = L$ through proof by contradiction.

Assume the contrary. Then there is $\varepsilon > 0$ such that $\forall \delta > 0$, there is $0 < |x - a| < \delta$ satisfying $|f(x) - L| \ge \varepsilon$.

Take $\delta_1 = 1$. Then there is x_1 satisfying $0 < |x_1 - a| < 1$ with $|f(x_1) - L| \ge \varepsilon$.

Take $\delta_2 = \min\left\{\frac{1}{2}, |x_1 - a|\right\}$. Then there is x_2 satisfying $0 < |x_2 - a| < \delta_2 \leq \frac{1}{2}$ with $|f(x_2) - L| \ge \varepsilon$.

Repeating this we obtain a sequence $\{x_n\}$ satisfying $0 < |x_n - a| < \frac{1}{n}$ and $|f(x_n) - L| \ge \varepsilon$ for every $n \in \mathbb{N}$.

As $0 < |x_n - a|$ we see that $\forall n \in \mathbb{N}, x_n \neq a$;

As $|x_n - a| < \frac{1}{n}$ we have $-\frac{1}{n} < x_n - a < \frac{1}{n}$ which yields $\lim_{n \to \infty} x_n = a$ thanks to Squeeze Theorem;

Now we prove that $\lim_{n\to\infty} f(x_n) = L$ does not hold. We still use the above particular ε . Let $N \in \mathbb{N}$ be arbitrary. Take n = N + 1. Then we have $n \ge N$ and $|f(x_n) - L| \ge \varepsilon$.

Theorem 1 has the following variant where the limit L does not appear explicitly.

THEOREM 2. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. Then $\lim_{x \to a} f(x)$ exists if and only if for every sequence $\{x_n\}$ satisfying $\lim_{n \to \infty} x_n = a$ and $\forall n \in \mathbb{N}, x_n \neq a$, $\lim_{n \to \infty} f(x_n)$ exists.

Problem 1. Prove Theorem Theorem 2.

Exercise 1. Does the conclusion of Theorem 2 still holds if we replace " $\lim_{n\to\infty} f(x_n)$ exists" by " $\{f(x_n)\}$ is Cauchy"?

Exercise 2. Generalize the Theorems 1 and 2 to the situation $f(x): A \mapsto \mathbb{R}$ and then prove the generalized version.

Exercise 3. Do the Theorems 1 and 2 still hold if $a = \pm \infty$ or $L = \pm \infty$? Justify your answers.

• The following variant of Theorem 1 is especially convenient in the proof of nonexistence of $\lim_{x\to a} f(x)$.

THEOREM 3. Let $f(x): \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Then $\lim_{x \to a} f(x)$ does not exist if and only if there are two sequences $\{x_n\}, \{y_n\}$ satisfying $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$ and $\forall n \in \mathbb{N}, x_n \neq a, y_n \neq a$, but $\lim_{n \to \infty} f(x_n) = L_1 \neq L_2 = \lim_{n \to \infty} f(y_n)$.

Exercise 4. Prove Theorem 3.

Example 4. Let $f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases}$. Prove that $\lim_{x \to 0} f(x)$ does not exist.

Proof. Take $x_n = \frac{1}{n}$ and $y_n = -\frac{1}{n}$. Then we have $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$, $x_n \neq 0$, $y_n \neq 0$ but $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1 = 1 \neq 0 = \lim_{n \to \infty} f(y_n)$. Thus ends the proof. \Box

• Left/right limits.

DEFINITION 5. (LEFT LIMIT) Let $f: \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. We say f(x) has left limit L at a if and only if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall a - \delta < x < a, \qquad |f(x) - L| < \varepsilon.$$
(1)

Exercise 5. Define "Right Limit". (Ans:¹)

NOTATION 6. We write

$$\lim_{x \to a^{-}} f(x) = L, \qquad \lim_{x \to a^{+}} f(x) = L$$
(2)

for left/right limits respectively.

THEOREM 7. Let $f: \mathbb{R} \mapsto \mathbb{R}$. $a, L \in \mathbb{R}$. Then $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = L$.

Proof. We prove "If" then "Only if".

- $\begin{array}{ll} \circ & \text{ If. Let } \varepsilon > 0 \text{ be arbitrary. As } \lim_{x \to a^{-}} f(x) = L \text{ there is } \delta_{L} > 0 \text{ such that when } \\ a \delta_{L} < x < a \text{ we have } |f(x) L| < \varepsilon; \\ & \text{ As } \lim_{x \to a^{+}} f(x) = L \text{ there is } \delta_{R} > 0 \text{ such that when } a < x < a + \delta_{R}, |f(x) L| < \varepsilon. \\ & \text{ Set } \delta = \min \{\delta_{L}, \delta_{R}\}. \text{ Then for every } 0 < |x a| < \delta, \text{ either } a \delta_{L} \leq a \delta < x < a \\ & \text{ or } a < x < a + \delta \leq a + \delta_{R}. \text{ Either case leads to } |f(x) L| < \varepsilon. \end{array}$
- Only if. We prove $\lim_{x\to a^-} f(x) = L$ and leave the proof of $\lim_{x\to a^+} f(x) = L$ as exercise as it is almost identical to the left limit proof.

Let $\varepsilon > 0$ be arbitrary. As $\lim_{x \to a} f(x) = L$ there is $\delta_0 > 0$ such that $0 < |x - a| < \delta_0$ implies $|f(x) - L| < \varepsilon$. Now take $\delta = \delta_0$. For every $a - \delta < x < a$ we have $|x - a| = a - x < \delta = \delta_0$ which means $0 < |x - a| < \delta_0$ and consequently $|f(x) - L| < \varepsilon$. Therefore $\lim_{x \to a^-} f(x) = L$.

 $^{1. \ \}forall \varepsilon > 0 \ \exists \delta > 0 \ \forall a < x < a + \delta, \qquad |f(x) - L| < \varepsilon.$