MATH 117 FALL 2014 HOMEWORK 5 SOLUTIONS

DUE THURSDAY OCT. 16 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Let $f, g: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Further assume $\lim_{x\to a} f(x) = L \in \mathbb{R}$ and $\lim_{x\to a} g(x) = M \in \mathbb{R}$.

- a) (2 PTS) Prove or disprove: Under the above assumptions, there is M > 0 such that $\forall x \in \mathbb{R}$, |f(x)| < M;
- b) (2 PTS) Prove by definition: $\lim_{x\to a} [f(x) g(x)] = L M;$
- c) (1 PT) Compare your proof with that of $\lim_{n\to\infty} a_n b_n = a b$ in the lecture note for Oct.6. Is your proof simply a "translation" of the proof there? Are there any new ideas involved? Explain why these new ideas are necessary.

Proof.

- a) The claim is not true. For example let a = 0 and f(x) = x. We have, on one hand, for every $\varepsilon > 0$, taking $\delta = \varepsilon$ gives $\forall 0 < |x 0| < \delta$, $|f(x) 0| = |x 0| < \delta = \varepsilon$. Therefore $\lim_{x \to 0} f(x) = 0$. On the other hand, let M > 0 be arbitrary, taking x = M we have $|f(x)| = M \ge M$.
- b) Let $\varepsilon > 0$ be arbitrary. As $\lim_{x \to a} f(x) = L$, there is $\delta_1 > 0$ such that for every $0 < |x a| < \delta_1$, $|f(x) L| < 1 \Longrightarrow |f(x)| < |L| + 1$ (triangle); Furthermore there is $\delta_2 > 0$ such that for every $0 < |x a| < \delta_2$, $|f(x) L| < \frac{\varepsilon}{2M}$; As $\lim_{x \to a} g(x) = M$, there is $\delta_3 > 0$ such that for every $0 < |x a| < \delta_3$, $|g(x) M| < \frac{\varepsilon}{2(|L| + 1)}$. Now take $\delta = \min \{\delta_1, \delta_2, \delta_3\}$, we have for $0 < |x a| < \delta$,

$$\begin{aligned} |f(x)g(x) - LM| &= |[f(x) - L]M + f(x)[g(x) - M]| \\ &< \frac{\varepsilon}{2M} + (|L| + 1)\frac{\varepsilon}{2(|L| + 1)} = \varepsilon. \end{aligned}$$

c) Because of a), we have to introduce $\delta_1 > 0$. This is a new idea and is not from translating the sequence proof.

QUESTION 2. (5 PTS) Study $\lim_{x\to a} (\sqrt{x+1} - \sqrt{x})$ in the following situations:

- a) (2 PTS) $a = +\infty$;
- b) (3 PTS) a = 0;

Justify any claim you make.

Solution.

a) Let $\varepsilon > 0$ be arbitrary. Take $M = \varepsilon^{-2}$. Then for every x > M, we have

$$\left|\left(\sqrt{x+1} - \sqrt{x}\right) - 0\right| = \left|\frac{1}{\sqrt{x+1} + \sqrt{x}}\right| < \frac{1}{\sqrt{x}} < \frac{1}{\sqrt{M}} = \varepsilon.$$

$$\tag{1}$$

Therefore the limit is 0.

b) We first prove $\lim_{x\to 0} \sqrt{x} = 0$. Let $\varepsilon > 0$ be arbitrary. Take $\delta = \varepsilon^2$. Then for $0 < x < \delta$ (Note that as the domain of $\sqrt{x+1} - \sqrt{x}$ is $x \ge 0$, $0 < |x-0| < \delta$ becomes $0 < x < \delta$.) we have

$$|\sqrt{x} - 0| < \sqrt{\delta} = \varepsilon. \tag{2}$$

Next we prove $\lim_{x\to 0} \sqrt{1+x} = 1$. As the domain for the function is $x \ge 0$ we only need to consider $x \to 0 +$ here. Let $\varepsilon > 0$ be arbitrary. Take $\delta = 2\varepsilon$. We have for $0 < x < \delta$

$$|\sqrt{1+x} - 1| = \sqrt{1+x} - 1 < 1 + \frac{x}{2} - 1 < \frac{\delta}{2} = \varepsilon.$$
(3)

Therefore the limit when $x \to 0$ is 1 - 0 = 1.

To grader: It is OK if discussion on the domain of the function is missing.

QUESTION 3. (5 PTS) Let $\{a_n\}$ be a bounded sequence. Defined the set A to consist of all the a_n 's, that is $A = \{a_1, a_2, a_3, \ldots\}$. Let $M := \sup A$. Prove that

- a) (1 pt) $M \in \mathbb{R}$.
- b) (4 PTS) If there is no $n \in \mathbb{N}$ such that $M = a_n$, then there exists a increasing subsequence $\{a_{n_k}\}$ such that $\lim_{k\to\infty} a_{n_k} = M$. Make sure you check the definition for subsequences.

Proof.

- a) Clearly $M \ge a_1$ therefore it is either a real number of $+\infty$. As $\{a_n\}$ is bounded, there is M' > 0 such that $\forall n \in \mathbb{N}, |a_n| < M'$. In particular we have $\forall n \in \mathbb{N}, a_n < M'$ that is M' is an upper bound of $\{a_n\}$. Now by definition $M = \sup A \leq M'$ that is $M \in \mathbb{R}$.
- b) We construct a_{n_k} one by one as follows.
 - First take $a_{n_1} = a_1$.
 - As $a_1 \neq M$, $m_1 := a_1 < M$. But m_1 cannot be an upper bound for $\{a_n\}$ which means there is $n_2 > 1$ such that $a_{n_2} > m_1 = a_1$.
 - Let $m_2 := \max \left\{ a_1, ..., a_{n_2}, M \frac{1}{2} \right\}$. We have $m_2 < M$. Therefore m_2 is not an upper bound for $\{a_n\}$ and there must be $n_3 \in \mathbb{N}$ such that $a_{n_3} > m_2$. By definition of m_2 we have $n_3 > n_2$ and $a_{n_3} > a_{n_2}$.
 - Let $m_3 := \max\left\{a_1, \dots, a_{n_3}, M \frac{1}{3}\right\}$. We can find $n_4 > n_3$ such that $a_{n_4} > a_{n_3}$.

Repeating this process we obtain an increasing subsequence $\{a_{n_k}\}$ satisfying $a_{n_k} > M - \frac{1}{k}$. On the other hand we have $a_{n_k} < M$. Application of Squeeze Theorem gives $\lim_{k \to \infty} a_{n_k} = M$.

QUESTION 4. (5 PTS) Let $f: \mathbb{Q} \mapsto \mathbb{R}$ be defined as

$$f(x) = \frac{1}{q} \qquad when \ x = \frac{p}{q}, \ p, q \in \mathbb{Z}, q > 0, (p, q) = 1.$$
(4)

Let $a \in \mathbb{R}$. Study $\lim_{x \to a} f(x)$. You need to justify any claim you make.

Solution. We claim $\lim_{x\to a} f(x) = 0$ for every $a \in \mathbb{R}$.

Let $\varepsilon > 0$ be arbitrary. Let

$$A := \left\{ x \in \mathbb{Q} | x = \frac{p}{q}, p, q \in \mathbb{Z}, q > 0, (p, q) = 1, q \leqslant \varepsilon^{-1}, |x - a| < 1 \right\}.$$
(5)

Then A is a finite set as there are only finitely many natural numbers $q \leq \varepsilon^{-1}$ and for each q there are only finitely many $p \in \mathbb{Z}$ satisfying $\left|\frac{p}{q} - a\right| < 1$. Consequently,

$$\delta_1 := \min_{x \in A, x \neq a} \{ |x - a| \} > 0.$$
(6)

Set $\delta := \min \{1, \delta_1\}$. Then for any $0 < |x - a| < \delta$, $x \in \mathbb{Q}$, we must have |x - a| < 1 but $x \notin A$. Checking the definition for A we see that there must hold $x = \frac{p}{q}, q > \varepsilon^{-1}$. This means for every such $x, |f(x)| < \varepsilon$. Thus ends the proof.