Math 117 Fall 2014 Homework 5 Solutions

Due Thursday Oct. 16 3pm in Assignment Box

Question 1. (5 PTs) Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. Further assume $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=M \in \mathbb{R}$.
a) (2 PTS) Prove or disprove: Under the above assumptions, there is $M>0$ such that $\forall x \in \mathbb{R}$, $|f(x)|<M$;
b) (2 PTS) Prove by definition: $\lim _{x \rightarrow a}[f(x) g(x)]=L M$;
c) (1 PT) Compare your proof with that of $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$ in the lecture note for Oct.6. Is your proof simply a "translation" of the proof there? Are there any new ideas involved? Explain why these new ideas are necessary.

Proof.
a) The claim is not true. For example let $a=0$ and $f(x)=x$. We have, on one hand, for every $\varepsilon>0$, taking $\delta=\varepsilon$ gives $\forall 0<|x-0|<\delta,|f(x)-0|=|x-0|<\delta=\varepsilon$. Therefore $\lim _{x \rightarrow 0} f(x)=0$. On the other hand, let $M>0$ be arbitrary, taking $x=M$ we have $|f(x)|=M \geqslant M$.
b) Let $\varepsilon>0$ be arbitrary. As $\lim _{x \rightarrow a} f(x)=L$, there is $\delta_{1}>0$ such that for every $0<|x-a|<\delta_{1}$, $|f(x)-L|<1 \Longrightarrow|f(x)|<|L|+1$ (triangle); Furthermore there is $\delta_{2}>0$ such that for every $0<|x-a|<\delta_{2},|f(x)-L|<\frac{\varepsilon}{2 M} ;$ As $\lim _{x \rightarrow a} g(x)=M$, there is $\delta_{3}>0$ such that for every $0<|x-a|<\delta_{3},|g(x)-M|<\frac{\varepsilon}{2(|L|+1)}$. Now take $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, we have for $0<|x-a|<\delta$,

$$
\begin{aligned}
|f(x) g(x)-L M| & =|[f(x)-L] M+f(x)[g(x)-M]| \\
& <\frac{\varepsilon}{2 M}+(|L|+1) \frac{\varepsilon}{2(|L|+1)}=\varepsilon
\end{aligned}
$$

c) Because of a), we have to introduce $\delta_{1}>0$. This is a new idea and is not from translating the sequence proof.

QUESTION 2. (5 PTS) Study $\lim _{x \rightarrow a}(\sqrt{x+1}-\sqrt{x})$ in the following situations:
a) (2 PTS $) a=+\infty$;
b) (3 PTS $) a=0$;

Justify any claim you make.

Solution.

a) Let $\varepsilon>0$ be arbitrary. Take $M=\varepsilon^{-2}$. Then for every $x>M$, we have

$$
\begin{equation*}
|(\sqrt{x+1}-\sqrt{x})-0|=\left|\frac{1}{\sqrt{x+1}+\sqrt{x}}\right|<\frac{1}{\sqrt{x}}<\frac{1}{\sqrt{M}}=\varepsilon \tag{1}
\end{equation*}
$$

Therefore the limit is 0 .
b) We first prove $\lim _{x \rightarrow 0} \sqrt{x}=0$. Let $\varepsilon>0$ be arbitrary. Take $\delta=\varepsilon^{2}$. Then for $0<x<\delta$ (Note that as the domain of $\sqrt{x+1}-\sqrt{x}$ is $x \geqslant 0,0<|x-0|<\delta$ becomes $0<x<\delta$.) we have

$$
\begin{equation*}
|\sqrt{x}-0|<\sqrt{\delta}=\varepsilon \tag{2}
\end{equation*}
$$

Next we prove $\lim _{x \rightarrow 0} \sqrt{1+x}=1$. As the domain for the function is $x \geqslant 0$ we only need to consider $x \rightarrow 0+$ here. Let $\varepsilon>0$ be arbitrary. Take $\delta=2 \varepsilon$. We have for $0<x<\delta$

$$
\begin{equation*}
|\sqrt{1+x}-1|=\sqrt{1+x}-1<1+\frac{x}{2}-1<\frac{\delta}{2}=\varepsilon . \tag{3}
\end{equation*}
$$

Therefore the limit when $x \rightarrow 0$ is $1-0=1$.
To grader: It is OK if discussion on the domain of the function is missing.
Question 3. (5 PTs) Let $\left\{a_{n}\right\}$ be a bounded sequence. Defined the set A to consist of all the a_{n} 's, that is $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Let $M:=\sup A$. Prove that
a) $(1 \mathrm{PT}) M \in \mathbb{R}$.
b) (4 PTS) If there is no $n \in \mathbb{N}$ such that $M=a_{n}$, then there exists a increasing subsequence $\left\{a_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=$. Make sure you check the definition for subsequences.

Proof.

a) Clearly $M \geqslant a_{1}$ therefore it is either a real number of $+\infty$. As $\left\{a_{n}\right\}$ is bounded, there is $M^{\prime}>0$ such that $\forall n \in \mathbb{N},\left|a_{n}\right|<M^{\prime}$. In particular we have $\forall n \in \mathbb{N}, a_{n}<M^{\prime}$ that is M^{\prime} is an upper bound of $\left\{a_{n}\right\}$. Now by definition $M=\sup A \leqslant M^{\prime}$ that is $M \in \mathbb{R}$.
b) We construct $a_{n_{k}}$ one by one as follows.

- First take $a_{n_{1}}=a_{1}$.
- As $a_{1} \neq M, m_{1}:=a_{1}<M$. But m_{1} cannot be an upper bound for $\left\{a_{n}\right\}$ which means there is $n_{2}>1$ such that $a_{n_{2}}>m_{1}=a_{1}$.
- Let $m_{2}:=\max \left\{a_{1}, \ldots, a_{n_{2}}, M-\frac{1}{2}\right\}$. We have $m_{2}<M$. Therefore m_{2} is not an upper bound for $\left\{a_{n}\right\}$ and there must be $n_{3} \in \mathbb{N}$ such that $a_{n_{3}}>m_{2}$. By definition of m_{2} we have $n_{3}>n_{2}$ and $a_{n_{3}}>a_{n_{2}}$.
- Let $m_{3}:=\max \left\{a_{1}, \ldots, a_{n_{3}}, M-\frac{1}{3}\right\}$. We can find $n_{4}>n_{3}$ such that $a_{n_{4}}>a_{n_{3}}$.

Repeating this process we obtain an increasing subsequence $\left\{a_{n_{k}}\right\}$ satisfying $a_{n_{k}}>M-\frac{1}{k}$. On the other hand we have $a_{n_{k}}<M$. Application of Squeeze Theorem gives $\lim _{k \rightarrow \infty} a_{n_{k}}=M$.
Question 4. (5 Pts) Let $f: \mathbb{Q} \mapsto \mathbb{R}$ be defined as

$$
\begin{equation*}
f(x)=\frac{1}{q} \quad \text { when } x=\frac{p}{q}, p, q \in \mathbb{Z}, q>0,(p, q)=1 \tag{4}
\end{equation*}
$$

Let $a \in \mathbb{R}$. Study $\lim _{x \rightarrow a} f(x)$. You need to justify any claim you make.
Solution. We claim $\lim _{x \rightarrow a} f(x)=0$ for every $a \in \mathbb{R}$.
Let $\varepsilon>0$ be arbitrary. Let

$$
\begin{equation*}
A:=\left\{x \in \mathbb{Q}\left|x=\frac{p}{q}, p, q \in \mathbb{Z}, q>0,(p, q)=1, q \leqslant \varepsilon^{-1},|x-a|<1\right\} .\right. \tag{5}
\end{equation*}
$$

Then A is a finite set as there are only finitely many natural numbers $q \leqslant \varepsilon^{-1}$ and for each q there are only finitely many $p \in \mathbb{Z}$ satisfying $\left|\frac{p}{q}-a\right|<1$. Consequently,

$$
\begin{equation*}
\delta_{1}:=\min _{x \in A, x \neq a}\{|x-a|\}>0 . \tag{6}
\end{equation*}
$$

Set $\delta:=\min \left\{1, \delta_{1}\right\}$. Then for any $0<|x-a|<\delta, x \in \mathbb{Q}$, we must have $|x-a|<1$ but $x \notin A$. Checking the definition for A we see that there must hold $x=\frac{p}{q}, q>\varepsilon^{-1}$. This means for every such $x,|f(x)|<\varepsilon$. Thus ends the proof.

