MATH 117 FALL 2014 HOMEWORK 5

DUE THURSDAY OCT. 16 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Let $f, g: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Further assume $\lim_{x \to a} f(x) = L \in \mathbb{R}$ and $\lim_{x \to a} g(x) = M \in \mathbb{R}$.

- a) (2 PTS) Prove or disprove: Under the above assumptions, there is M > 0 such that $\forall x \in \mathbb{R}$, |f(x)| < M;
- b) (2 PTS) Prove by definition: $\lim_{x\to a} [f(x) g(x)] = L M;$
- c) (1 PT) Compare your proof with that of $\lim_{n\to\infty} a_n b_n = a b$ in the lecture note for Oct.6. Is your proof simply a "translation" of the proof there? Are there any new ideas involved? Explain why these new ideas are necessary.

QUESTION 2. (5 PTS) Study $\lim_{x\to a} (\sqrt{x+1} - \sqrt{x})$ in the following situations:

- a) (2 PTS) $a = +\infty$;
- b) (3 PTS) a = 0;

Justify any claim you make.

QUESTION 3. (5 PTS) Let $\{a_n\}$ be a bounded sequence. Defined the set A to consist of all the a_n 's, that is $A = \{a_1, a_2, a_3, ...\}$. Let $M := \sup A$. Prove that

- a) (1 pt) $M \in \mathbb{R}$.
- b) (4 PTS) If there is no $n \in \mathbb{N}$ such that $M = a_n$, then there exists a increasing subsequence $\{a_{n_k}\}$ such that $\lim_{k\to\infty} a_{n_k} = M$. Make sure you check the definition for subsequences.

QUESTION 4. (5 PTS) Let $f: \mathbb{Q} \mapsto \mathbb{R}$ be defined as

$$f(x) = \frac{1}{q} \qquad when \ x = \frac{p}{q}, \ p, q \in \mathbb{Z}, q > 0, (p, q) = 1.$$
(1)

Let $a \in \mathbb{R}$. Study $\lim_{x \to a} f(x)$. You need to justify any claim you make.