Math 117 Fall 2014 Homework 5

Due Thursday Oct. 16 3pm in Assignment Box

Question 1. (5 PTs) Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ and $a \in \mathbb{R}$. Further assume $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=M \in \mathbb{R}$.
a) (2 PTs) Prove or disprove: Under the above assumptions, there is $M>0$ such that $\forall x \in \mathbb{R}$, $|f(x)|<M$;
b) (2 PTS) Prove by definition: $\lim _{x \rightarrow a}[f(x) g(x)]=L M$;
c) (1 PT) Compare your proof with that of $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$ in the lecture note for Oct.6. Is your proof simply a "translation" of the proof there? Are there any new ideas involved? Explain why these new ideas are necessary.

Question 2. (5 PTS) Study $\lim _{x \rightarrow a}(\sqrt{x+1}-\sqrt{x})$ in the following situations:
a) (2 PTS $) a=+\infty$;
b) (3 PTS $) a=0$;

Justify any claim you make.
Question 3. (5 PTs) Let $\left\{a_{n}\right\}$ be a bounded sequence. Defined the set A to consist of all the a_{n} 's, that is $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Let $M:=\sup A$. Prove that
a) $(1 \mathrm{PT}) M \in \mathbb{R}$.
b) (4 PTs) If there is no $n \in \mathbb{N}$ such that $M=a_{n}$, then there exists a increasing subsequence $\left\{a_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=M$. Make sure you check the definition for subsequences.

Question 4. (5 PTS) Let $f: \mathbb{Q} \mapsto \mathbb{R}$ be defined as

$$
\begin{equation*}
f(x)=\frac{1}{q} \quad \text { when } x=\frac{p}{q}, p, q \in \mathbb{Z}, q>0,(p, q)=1 \tag{1}
\end{equation*}
$$

Let $a \in \mathbb{R}$. Study $\lim _{x \rightarrow a} f(x)$. You need to justify any claim you make.

