Math 117 Fall 2014 Lecture 20 (Oct. 8, 2014)

Reading:

- In the following $a, b, L, M \in \mathbb{R}$. The cases of one or more of them are $+\infty$ or $-\infty$ are left as exercises. Please make sure you work on these cases - some of them may not be that straightforward - and compare your answers with those in the textbook (or any calculus books).
- Convergence implies boundedness.

Lemma 1. Let $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Then there is $M>0$ such that for all $n \in \mathbb{N},\left|a_{n}\right|<M$.
Proof. As $\lim _{n \rightarrow \infty} a_{n}=a$, there is $N \in \mathbb{N}$ such that for all $n \geqslant N,\left|a_{n}-a\right|<1$. This implies

$$
\begin{equation*}
\forall n \geqslant N, \quad\left|a_{n}\right|=\left|a_{n}-a+a\right| \leqslant\left|a_{n}-a\right|+|a|<|a|+1 . \tag{1}
\end{equation*}
$$

Now define

$$
\begin{equation*}
M:=\max \left\{|a|+1, \max _{i=1, \ldots, N-1}\left(\left|a_{i}\right|+1\right)\right\} . \tag{2}
\end{equation*}
$$

Then for every $n \in \mathbb{N}$, there are two cases:

- $n \geqslant N$. We have

$$
\begin{equation*}
\left|a_{n}\right|<|a|+1 \leqslant M ; \tag{3}
\end{equation*}
$$

- $n<N$. We have

$$
\begin{equation*}
\left|a_{n}\right| \leqslant \max _{i=1, \ldots, N-1}\left|a_{i}\right|<\max _{i=1, \ldots, N-1}\left(\left|a_{i}\right|+1\right) \leqslant M . \tag{4}
\end{equation*}
$$

Thus ends the proof.
Exercise 1. Can we choose N according to $\forall n \geqslant N, \quad\left|a_{n}-a\right|<|a|$?
Example 2. Consider the sequence $a_{n}=\frac{n+100}{n}$. Then if we apply the construction in the proof to this sequence, we can take $N=101$, and have $M=102$.

Exercise 2. Try this on $a_{n}=e^{-n} \sin \left(n^{2}\right)$.

- \div

Theorem 3. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences. Assume
i. $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$;
ii. $\lim _{n \rightarrow \infty} b_{n}=b \in \mathbb{R}$;
iii. $b \neq 0$.

Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$.
Proof. We first prove $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{b}$.
Let $\varepsilon>0$. Let $N_{1} \in \mathbb{N}$ be such that

$$
\begin{equation*}
\forall n \geqslant N_{1}, \quad\left|b_{n}-b\right|<\frac{|b|}{2} . \tag{5}
\end{equation*}
$$

Note that this is possible because $b \neq 0 \Longrightarrow \frac{|b|}{2}>0$. Thus

$$
\begin{equation*}
\forall n \geqslant N_{1}, \quad\left|b_{n}\right|=\left|b-\left(b-b_{n}\right)\right|>|b|-\left|b-b_{n}\right|>\frac{|b|}{2} . \tag{6}
\end{equation*}
$$

Next let $N_{2} \in \mathbb{N}$ be such that

$$
\begin{equation*}
\forall n \geqslant N_{2}, \quad\left|b_{n}-b\right|<\frac{|b|^{2}}{2} \varepsilon . \tag{7}
\end{equation*}
$$

Finally set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for every $n \geqslant N$,

$$
\begin{equation*}
\left|\frac{1}{b_{n}}-\frac{1}{b}\right|=\frac{\left|b_{n}-b\right|}{\left|b_{n}\right| \cdot|b|}<\frac{|b|^{2}}{2} \varepsilon \frac{1}{|b| / 2} \frac{1}{|b|}=\varepsilon . \tag{8}
\end{equation*}
$$

Thus we have proved $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{b}$.
Now as $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{b}$, we have $\lim _{n \rightarrow \infty} a_{n} \cdot \frac{1}{b_{n}}=a \cdot \frac{1}{b}=\frac{a}{b}$.
Remark 4. Note that the reason why we require $b \neq 0$ is not "if $b=0$ the above proof would fail"

Exercise 3. Which step fails if $b=0$?
Consider $a_{n}=1$ and $b_{n}=\frac{1}{n}, \frac{-1}{n}, \frac{(-1)^{n}}{n}$. We see that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is $+\infty,-\infty$, does not exist, repectively. Therefore if we allow $b=0$, then the limit of $\frac{a_{n}}{b_{n}}$ cannot be obtained from knowing a, b only.

- Limit for rational functions.

Example 5. Prove $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n}{7 n^{3}+5 n^{2}+1}=\frac{3}{7}$.
Proof. First we know that $\lim _{n \rightarrow \infty} n^{-1}=0$. Then as $n^{-2}=n^{-1} \cdot n^{-1}$ application of the theorem for $\lim _{n \rightarrow \infty} a_{n} b_{n}$ we conclude $\lim _{n \rightarrow \infty} n^{-2}=0$. Next as $n^{-3}=n^{-1} \cdot n^{-2}$ we reach $\lim _{n \rightarrow \infty} n^{-3}=0$. Finally we know that if $c \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} c=c$. This yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2 n^{-2}=0, \quad \lim _{n \rightarrow \infty} 5 n^{-1}=0 \tag{9}
\end{equation*}
$$

Summarizing the above, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(3+2 n^{-2}\right)=3, \quad \lim _{n \rightarrow \infty}\left(7+5 n^{-1}+n^{-3}\right)=7 \tag{10}
\end{equation*}
$$

As $7 \neq 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{3+2 n^{-2}}{7+5 n^{-1}+n^{-3}}=\frac{3}{7} \tag{11}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{3+2 n^{-2}}{7+5 n^{-1}+n^{-3}}=\frac{3 n^{3}+2 n}{7 n^{3}+5 n^{2}+1} \tag{12}
\end{equation*}
$$

Therefore $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n}{7 n^{3}+5 n^{2}+1}=\frac{3}{7}$.

- Some Typical Mistakes.

The following are problematic proofs.

- Prove $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$.

Proof. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=\lim _{n \rightarrow \infty}(-1)^{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=\left[\lim _{n \rightarrow \infty}(-1)^{n}\right] \cdot 0=0 . \tag{13}
\end{equation*}
$$

Thus ends the proof.
Remark 6. $a \cdot 0=0$ for every real number a. But $\lim _{n \rightarrow \infty}(-1)^{n}$ is not a real number!
Exercise 4. Prove the limit by definition.

- Prove $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$.

Proof. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=\lim _{n \rightarrow \infty} \sqrt{n+1}-\lim _{n \rightarrow \infty} \sqrt{n}=\infty-\infty=0 . \tag{14}
\end{equation*}
$$

Thus ends the proof.
Exercise 5. Find sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ with $\lim _{n \rightarrow \infty} a_{n}=+\infty ; \lim _{n \rightarrow \infty} b_{n}=+\infty$ for each of the following requirement:

$$
\begin{aligned}
& -\quad \lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right]=1 ; \\
& - \\
& -\lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right]=+\infty ; \\
& - \\
& -\lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right]=-\infty ; \\
& - \\
& \lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right] \text { does not exist. }
\end{aligned}
$$

