Math 117 Fall 2014 Lecture 19 (Oct. 6, 2014)

Reading:

- In the following $a, b, L, M \in \mathbb{R}$. The cases of one or more of them are $+\infty$ or $-\infty$ are left as exercises. Please make sure you work on these cases - some of them may not be that straightforward - and compare your answers with those in the textbook (or any calculus books).
- Comparison.

Theorem 1. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences. Assume
i. $\lim _{n \rightarrow \infty} a_{n}=a$;
ii. $\lim _{n \rightarrow \infty} b_{n}=b$;
iii. $\forall n \in \mathbb{N}, a_{n} \leqslant b_{n}$.

Then $a \leqslant b$.
Proof. Assume the contrary, that is $a>b$. Then

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} a_{n}=a \Longrightarrow \exists N_{1} \in \mathbb{N} \forall n \geqslant N_{1}, & \left|a_{n}-a\right|<\frac{a-b}{2} ; \\
\lim _{n \rightarrow \infty} b_{n}=b \Longrightarrow \exists N_{2} \in \mathbb{N} \forall n \geqslant N_{2}, \quad\left|b_{n}-b\right|<\frac{a-b}{2} . \tag{2}
\end{array}
$$

Thus for $n \geqslant N_{1}$,

$$
\begin{equation*}
a_{n}-a \geqslant-\left|a_{n}-a\right|>\frac{b-a}{2} \Longrightarrow a_{n}>\frac{a+b}{2} \tag{3}
\end{equation*}
$$

and similarly for $n \geqslant N_{2}$,

$$
\begin{equation*}
b_{n}-b \leqslant\left|b_{n}-b\right|<\frac{a-b}{2} \Longrightarrow b_{n}<\frac{a+b}{2} . \tag{4}
\end{equation*}
$$

Set $N=\max \left\{N_{1}, N_{2}\right\}$, then for any $n \geqslant N$, we have

$$
\begin{equation*}
a_{n}>\frac{a+b}{2}>b_{n} . \tag{5}
\end{equation*}
$$

A contradiction to assumption iii.
Exercise 1. Try to prove the above theorem not using proof by contradiction.
Exercise 2. Prove the following generalization:
Let assumptions i, ii still hold. Replace iii with iii': $\exists N_{0} \in \mathbb{N} \forall n \geqslant N_{0}, \quad a_{n} \leqslant b_{n}$. Then $a \leqslant b$.
Exercise 3. Write down the corresponding "Comparison Theorem" for functions.
Remark 2. Note that if we replace iii by $\forall n \in \mathbb{N}, \quad a_{n}<b_{n}$, the conclusion does not change to $a<b$, as can be seen from the example $a_{n}=\frac{1}{n}, b_{n}=\frac{2}{n}$.
-,+- .
Theorem 3. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences. Assume $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b \tag{6}
\end{equation*}
$$

Proof. We prove the "+" case and leave the " - " case as exercise.
Let $\varepsilon>0$ be arbitrary.

$$
\begin{gather*}
\lim _{n \rightarrow \infty} a_{n}=a \Longrightarrow \exists N_{1} \in \mathbb{N} \forall n \geqslant N_{1}, \quad\left|a_{n}-a\right|<\frac{\varepsilon}{2} ; \tag{7}\\
\lim _{n \rightarrow \infty} b_{n}=a \Longrightarrow \exists N_{2} \in \mathbb{N} \forall n \geqslant N_{2}, \quad\left|b_{n}-b\right|<\frac{\varepsilon}{2} . \tag{8}
\end{gather*}
$$

Now set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for every $n \geqslant N$, we have

$$
\begin{equation*}
\left|\left(a_{n}+b_{n}\right)-(a+b)\right|=\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leqslant\left|a_{n}-a\right|+\left|b_{n}-b\right|<\varepsilon . \tag{9}
\end{equation*}
$$

Thus ends the proof.
Exercise 4. Let $a_{n}=\frac{1}{n^{2}}, b_{n}=\frac{1}{n}$. Find the N_{1}, N_{2}, N as in the above proof.
Exercise 5. Write down and prove the corresponding theorem for functions.

- \times.

Theorem 4. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences. Assume $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b \tag{10}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be arbitrary. We have the following lemma which will be proved in the next lecture:

Lemma 5. Let $\left\{a_{n}\right\}$ be a sequence and assume $\lim _{n \rightarrow \infty} a_{n}=a$. Then there is $M>0$ such that $\forall n \in \mathbb{N},\left|a_{n}\right|<M$.

Exercise 6. Does the lemma still hold if we allow a to be $+\infty$ or $-\infty$? Justify your answer.
Now we continue the proof. We have ${ }^{1}$

$$
\begin{gather*}
\lim _{n \rightarrow \infty} a_{n}=a \Longrightarrow \exists N_{1} \in \mathbb{N} \forall n \geqslant N_{1}, \quad\left|a_{n}-a\right|<\frac{\varepsilon}{2(|b|+1)} ; \tag{11}\\
\lim _{n \rightarrow \infty} b_{n}=a \Longrightarrow \exists N_{2} \in \mathbb{N} \forall n \geqslant N_{2}, \quad\left|b_{n}-b\right|<\frac{\varepsilon}{2 M} . \tag{12}
\end{gather*}
$$

Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for every $n \geqslant N$, we have

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|\left(a_{n}-a\right) b+a_{n}\left(b_{n}-b\right)\right| \\
& \leqslant\left|a_{n}-a\right||b|+\left|a_{n}\right|\left|b_{n}-b\right| \\
& <\frac{\varepsilon}{2(|b|+1)}|b|+M \frac{\varepsilon}{2 M} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus ends the proof.
Exercise 7. Let $a_{n}=\frac{3}{n^{2}}, b_{n}=\frac{2}{n}$. Find the M, N_{1}, N_{2}, N as in the above proof.
Exercise 8. Write down and prove the corresponding theorem for functions.

[^0]
[^0]: 1. We use $|b|+1$ instead of $|b|$ to make sure no "division by 0 " will occur.
