Math 117 Fall 2014 Lecture 18 (Oct. 3, 2014)

Reading:

- Some leftovers.
- $a, L \in \mathbb{R}$. Definition for " $\lim _{x \rightarrow a} f(x)=L$ " is not true.

$$
\begin{equation*}
\exists \varepsilon>0 \forall \delta>0 \quad \exists x 0<|x-a|<\delta, \quad|f(x)-L| \geqslant \varepsilon . \tag{1}
\end{equation*}
$$

Remark 1. Note the difference between the above statement and " $\lim _{x \rightarrow a} f(x) \neq L$ ", which means " $\lim _{x \rightarrow a} f(x)$ " exists but is a different number from L.

Exercise 1. Prove that if $\lim _{x \rightarrow a} f(x)=L$, then for any $L^{\prime} \neq L$, $\lim _{x \rightarrow a} f(x)=L^{\prime} "$ is not true.
Exercise 2. Write down the definitions for " $\lim _{x \rightarrow a} f(x)=L "$ is not true when a, L belong to the other eight cases.
Exercise 3. Prove that " $\lim _{x \rightarrow 0} \sin \frac{1}{x}=0$ " is not true.
Exercise 4. Write down the definition for $\lim _{x \rightarrow a} f(x)$ does not exist.

- A few more questions about limit.

Exercise 5. Let $f: \mathbb{R} \mapsto \mathbb{R}$. Are the following two statements equivalent? Justify your answer.

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=L ; \quad \lim _{t \rightarrow+\infty} f\left(\frac{1}{t}\right)=L . \tag{2}
\end{equation*}
$$

Problem 1. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ and $a, b, L \in \mathbb{R}$. Assume $\lim _{t \rightarrow a} f(t)=b, \lim _{x \rightarrow b} g(x)=L$. Prove or disprove:

There always holds $\lim _{t \rightarrow a} g(f(t))=L$.
(Hint: ${ }^{1}$)
Problem 2. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$. Write down a reasonable definition for

$$
\begin{equation*}
\lim _{g(x) \rightarrow a} f(x)=L \tag{3}
\end{equation*}
$$

- In this lecture we discuss limits for a function $f: A \mapsto \mathbb{R}$ where $A \subset \mathbb{R}$. The definition of $\lim _{x \rightarrow a} f(x)=L$ may need to be modified.
- Simple cases.
- $A=\mathbb{R}-\{a\}$.

Example 2. Study $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$.
Solution. Intuitively the limit is 2 . Now we see whether the definition for $f: \mathbb{R} \mapsto \mathbb{R}$ applies to the current situation.

We try to check:

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x 0<|x-1|<\delta \quad\left|\frac{x^{2}-1}{x-1}-2\right|<\varepsilon . \tag{4}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary. Set $\delta=\varepsilon$. Then for every x satisfying $0<|x-1|<\delta$, we have

$$
\begin{equation*}
\left|\frac{x^{2}-1}{x-1}-2\right|=|x+1-2|=|x-1|<\delta=\varepsilon . \tag{5}
\end{equation*}
$$

Note that the first equality holds because we require $0<|x-1|$.

We see that the old definition still applies.

- $\quad A \supseteq(c, d)$ where $a \in(c, d)$.

Example 3. Study $\lim _{x \rightarrow 1} \frac{1}{x^{3}}$.
Solution. Clearly the limit should be 1 . The problem now is that $f(x)=\frac{1}{x^{3}}$ is not defined at $x=0$. Let's see whether the old definition still applies.

Let $\varepsilon>0$ be arbitrary. Set $\delta=\min \left\{\frac{\varepsilon}{38}, \frac{1}{2}\right\} .^{2}$ For every $0<|x-1|<\delta$ we have

$$
\begin{equation*}
\left|\frac{1}{x^{3}}-1\right|=\left|\frac{x^{3}-1}{x^{3}}\right|=|x-1|\left|\frac{x^{2}+x+1}{x^{3}}\right|<\delta\left|\frac{x^{2}+x+1}{x^{3}}\right| \leqslant \varepsilon . \tag{6}
\end{equation*}
$$

Thus we see that the old definition still applies.
Exercise 6. If in the above proof we set $\delta=\min \left\{?, \frac{1}{3}\right\}$, what choice can we make to fill the "?"?

- Summary. Combining the above, we see that when there is (c, d) such that $a \in(c, d)$ and $(c, d)-\{a\} \subseteq A$, no change is needed in the definition for $\lim _{x \rightarrow a} f(x)=L$.
- More complicated cases.

For more complicated A the definition for $\lim _{x \rightarrow a} f(x)=L$ needs to be revised.
Example 4. Let $f(x)=\sqrt{x(1-x)}$. Study $\lim _{x \rightarrow 2} f(x)$.
Solution. This is a wrong question to ask, as the idea for limit is "as x approaches a, does f approach L ?" In this example the domain of f is $[0,1]$ and it is not possible for x to approach a.

Definition 5. (Limit Point) Let $A \subseteq \mathbb{R}, a \in \mathbb{R}$. a is said to be a "limit point" (or "cluster point") of the set A if and only if

$$
\begin{equation*}
\forall \delta>0 \exists a^{\prime} \in A \quad 0<\left|a-a^{\prime}\right|<\delta \tag{7}
\end{equation*}
$$

Example 6. Let $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Find the set of its limit points.
Solution. We claim that this set consists of the single point 0 , that is it is $\{0\}$. To prove this we need to justify two things.

- 0 is a limit point of A.

Let $\delta>0$ be arbitrary. Take $n \in \mathbb{N}$ such that $n>\delta^{-1}$. Then set $a^{\prime}=\frac{1}{n}$. We see that $0 \neq a^{\prime}$ which gives $\left|0-a^{\prime}\right|>0$, and furthermore $\left|0-a^{\prime}\right|=\frac{1}{n}<\delta$.

- Let $a \in \mathbb{R}, a \neq 0$, then a is not a limit point of A.

2. To understand this choice of δ, we need to first clearly understand the requirements on δ. The choice of δ should be such that
i. When $0<|x-1|<\delta, x \neq 0$;
ii. When $0<|x-1|<\delta$, there is a number $M \in \mathbb{R}$ such that $\left|x^{2}+x+1\right| \leqslant M$;
iii. When $0<|x-1|<\delta$, there is a number $m>0$ such that $\left|x^{3}\right|>m$ - otherwise $\frac{1}{\left|x^{3}\right|}$ can get arbitrarily large;
iv. When $0<|x-1|<\delta,\left|\frac{1}{x^{3}}-1\right|<\varepsilon$.

The first is satisfied when $\delta \leqslant 1$, the second when δ is finite (which is automatically satisfied for any δ we may choose), the third when $\delta<1$. As usual, we will deal with the fourth requirement after making a specific choice of δ satisfying all of $\mathrm{i}-\mathrm{iii}$. Let's say we pick $\delta=\frac{1}{2}$. Then we have $\left|\frac{1}{x^{3}}-1\right|<38 \delta$ and the choice for iv is now obvious.

There are three cases.

- $\quad a>1$. Set $\delta=a-1>0$. We see that $\forall a^{\prime} \in A$, there holds $a^{\prime} \leqslant 1$ and consequently $\left|a-a^{\prime}\right| \geqslant \delta$. Therefore a cannot be a limit point of A;
- $a<0$. Set $\delta=|a|>0$. We see that $\forall a^{\prime} \in A$, there holds $a^{\prime}>0$ and consequently $\left|a-a^{\prime}\right|>|a|=\delta$. Therefore a cannot be a limit point of A;
$-a \in[0,1]$. This case is a bit tricky. We define a set $A_{a}:=\left\{n \in \mathbb{N} \left\lvert\, \frac{a}{2}<\frac{1}{n}<\frac{3 a}{2}\right.\right\}$. Then A_{a} is a finite set. Now set

$$
\begin{equation*}
\delta:=\min \left\{\frac{a}{2}, \min _{a^{\prime} \in A_{a}, a^{\prime} \neq a}\left\{\left|a^{\prime}-a\right|\right\}\right\} . \tag{8}
\end{equation*}
$$

Then $\delta>0$. Furthermore for every $a^{\prime} \in A$, if $a^{\prime} \notin A_{a}$, we have

$$
\begin{equation*}
\left|a-a^{\prime}\right| \geqslant \frac{a}{2} \geqslant \delta \tag{9}
\end{equation*}
$$

On the other hand if $a^{\prime} \in A_{a}$, we have

$$
\begin{equation*}
\left|a-a^{\prime}\right| \geqslant \min _{a^{\prime} \in A_{a}, a^{\prime} \neq a}\left\{\left|a^{\prime}-a\right|\right\} \geqslant \delta . \tag{10}
\end{equation*}
$$

Thus for every $a^{\prime} \in A$ we have $\left|a-a^{\prime}\right| \geqslant \delta$ and consequently a is not a limit point of A.

Exercise 7. Calculate the set of limit points for $A:=(0,1)$. Justify.
Exercise 8. Calculate the set of limit points for $A=\mathbb{Q}$. Justify.
Exercise 9. Calculate the set of limit points for N. Justify.
Problem 3. Calculate the set of limit points for $A:=\left\{\left.\frac{1}{m^{2}}+\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$. Justify your answer.
Problem 4. Let $A \subseteq \mathbb{R}$. Let A^{\prime} be the set of limit points of A. Let $A^{\prime \prime}$ be the set of limit points of A^{\prime}. Find the relation between A^{\prime} and $A^{\prime \prime}$, then justify.

- A definition that is universally applicable.

Let $f: A \mapsto \mathbb{R}$. Let $a \in \mathbb{R}$ be a limit point of A. We say $\lim _{x \rightarrow a} f(x)=L$ for $L \in \mathbb{R}$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x \text { satisfying } 0<|x-a|<\delta \text { and } x \in A, \quad|f(x)-L|<\varepsilon . \tag{11}
\end{equation*}
$$

Exercise 10. Let $f(x): \mathbb{Q} \mapsto \mathbb{R}$ be defined as $f(x)=x$. Let $a \in \mathbb{R}$. Prove $\lim _{x \rightarrow a} f(x)=a$.
Exercise 11. Revise the definition for the case $L=+\infty$.
Exercise 12. Revise the definition for the case $a=-\infty$. Do you have any difficulty doing so?
Problem 5. Let $f: \mathbb{Q} \mapsto \mathbb{R}$ be defined as

$$
\begin{equation*}
f(x)=\frac{1}{q} \quad \text { when } x=\frac{p}{q} \text { where } p, q \in \mathbb{Z}, q>0,(p, q)=1 \text {. } \tag{12}
\end{equation*}
$$

Let $a \in \mathbb{R}$. Study $\lim _{x \rightarrow a} f(x)$.

