MATH 117 FALL 2014 HOMEWORK 4 SOLUTIONS

DUE THURSDAY OCT. 9 3PM IN ASSIGNMENT BOX

QUESTION 1. (10 PTS) Prove the following statements by definition.

- a) (2 pts) $\lim_{n\to\infty} \frac{n!}{n^n} = 0.$
- b) (2 PTS) $\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right] = 1.$
- c) (2 PTS) The sequence $\{(-1)^{n^2}\}$ is divergent.
- d) (2 PTS) $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0.$ e) (2 PTS) The limit $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Proof.

a) Let $\varepsilon > 0$ be arbitrary. Set $N > -2 \log_2 \varepsilon$, then we have for all $n \ge N$,

$$\left|\frac{n!}{n^n} - 0\right| = \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{1}{n} \leqslant \frac{N/2}{n} \cdot \frac{(N/2) - 1}{n} \cdots \frac{1}{n} \leqslant \left(\frac{1}{2}\right)^{N/2} = \left(\frac{1}{2}\right)^{-\log_2 \varepsilon} < \varepsilon.$$
(1)

Thus ends the proof.

b) First we observe that for every $n \in \mathbb{N}$,

$$\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} < \frac{1}{\sqrt{n^2}} + \dots + \frac{1}{\sqrt{n^2}} = 1.$$
 (2)

Let $\varepsilon > 0$ be arbitrary. Set $N > \varepsilon^{-1}$, then we have for all $n \ge N$,

$$\left| \frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} - 1 \right| = 1 - \left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$
$$< 1 - \left(\frac{1}{\sqrt{n^2 + 2n + 1}} + \dots + \frac{1}{\sqrt{n^2 + 2n + 1}} \right)$$
$$= 1 - \frac{n}{n+1} = \frac{1}{n+1} < \frac{1}{N} < \varepsilon.$$
(3)

Thus ends the proof.

c) Let $a \in \mathbb{R}$ be arbitrary. We prove that $\lim_{n \to \infty} (-1)^{n^2} = a$ cannot hold. Assume the contrary. Then there is $N \in \mathbb{N}$ such that for all $n \ge N$,

$$|a_n - a| < 1. \tag{4}$$

Now we discuss two cases.

- $a \ge 0$. Let n = 2 N + 1. Then we have $|a_n a| = |(-1) a| = 1 + |a| \ge 1$. Contradiction.
- a < 0. Let n = 2N. Then we have $|a_n a| = |1 a| = 1 + |a| > 1$. Contradiction.

d) Let $\varepsilon > 0$ be arbitrary. Take $\delta = \varepsilon^{1/2}$. Then for every $0 < |x - 0| < \delta$ we have

$$\left|x^2 \sin\frac{1}{x} - 0\right| = |x|^2 \left|\sin\frac{1}{x}\right| \le |x|^2 < \delta^2 = \varepsilon.$$

$$\tag{5}$$

e) Let $L \in \mathbb{R}$ be arbitrary. We prove the $\lim_{x \to 0} \sin\left(\frac{1}{x}\right) = L$ cannot hold. Assume the contrary. Then there is $\delta > 0$ such that for all $0 < |x| < \delta$, $\left|\sin\frac{1}{x} - L\right| < 1$. We discuss two cases.

• $L \ge 0$. Let $n \in \mathbb{N}$ be such that $n > \delta^{-1}$. We take $x = \left(2 n \pi + \frac{3\pi}{2}\right)^{-1} < n^{-1} < \delta$. Then $\left|\sin\frac{1}{x} - L\right| = |-1 - L| = 1 + L \ge 1,$ (6)

contradiction:

• L < 0. Let $n \in \mathbb{N}$ be such that $n > \delta^{-1}$. We take $x = \left(2 n \pi + \frac{\pi}{2}\right)^{-1} < n^{-1} < \delta$. Then

$$\left|\sin\frac{1}{x} - L\right| = |1 - L| = 1 + |L| > 1,\tag{7}$$

contradiction again.

QUESTION 2. (5 PTS) A sequence $\{a_n\}$ is said to be "bounded above" if and only if there is M > 0 such that $\forall n \in \mathbb{N}, a_n \leq M$.

- a) (2 PTS) Write down the definition of " $\{a_n\}$ is not bounded above", that is write down the working negation of " $\{a_n\}$ is bounded above".
- b) (3 PTS) Prove or disprove the following statement:

If $\{a_n\}$ is not bounded above, then $\lim_{n\to\infty} a_n = +\infty$.

Solution.

- a) $\forall M > 0 \exists n \in \mathbb{N}, \quad a_n > M.$
- b) Let $a_n = [1 + (-1)^n] n, n \in \mathbb{N}$.
 - $\{a_n\}$ is not bounded above. Let M > 0 be arbitrary. Take $n \in \mathbb{N}$ such that n > M and is even. Then we have

$$a_n = 2 n > M. \tag{8}$$

Therefore $\{a_n\}$ is not bounded above.

• $\lim_{n \to \infty} a_n = +\infty$ is not true.

To prove this we need to show

$$\exists M > 0 \ \forall N \in \mathbb{N} \ \exists n \ge N, \qquad a_n \leqslant M. \tag{9}$$

Take M = 1. Let $N \in \mathbb{N}$ be arbitrary. Take $n = 2N + 1 \ge N$. Then we have

$$a_n = [1 + (-1)^{2N+1}] n = 0 \le 1 = M.$$
(10)

Thus ends the proof.

QUESTION 3. (5 PTS) Let $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}$. Prove by definition that $\lim_{n \to \infty} H_n = +\infty$.

Proof. Let M > 0 be arbitrary. Set $N > 2^{2M}$. Then we have, for all $n \ge N$,

$$H_n > 1 + \frac{1}{2} + \dots + \frac{1}{2^{2M} - 1} \tag{11}$$

$$= 1 + \left(\frac{1}{2^{1}} + \frac{1}{2^{2} - 1}\right) + \left(\frac{1}{2^{2}} + \dots + \frac{1}{2^{3} - 1}\right) + \dots + \left(\frac{1}{2^{2M - 1}} + \dots + \frac{1}{2^{2M} - 1}\right)$$
(12)

>
$$1 + \frac{2^1}{2^2} + \frac{2^2}{2^3} + \dots + \frac{2^{2M-1}}{2^{2M}}$$
 (13)

$$= 1 + \frac{1}{2} + \dots + \frac{1}{2} \qquad \left(2M - 1 \frac{1}{2}, s\right)$$
(14)

$$> \frac{2M}{2} = M. \tag{15}$$

Thus $\lim_{n\to\infty} H_n = +\infty$ by definition.