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Question 1. (10 pts) Prove the following statements by de�nition.
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Proof.
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Thus ends the proof.

b) First we observe that for every n2N,
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Thus ends the proof.

c) Let a2R be arbitrary. We prove that limn!1 (¡1)n2=a cannot hold. Assume the contrary.
Then there is N 2N such that for all n>N ,

jan¡ aj< 1: (4)

Now we discuss two cases.

� a>0. Let n=2N+1. Then we have jan¡aj= j(¡1)¡aj=1+ jaj>1. Contradiction.

� a< 0. Let n=2N . Then we have jan¡ aj= j1¡ aj=1+ jaj> 1. Contradiction.



d) Let "> 0 be arbitrary. Take �= "1/2. Then for every 0< jx¡ 0j<� we have����x2 sin1x ¡ 0
����= jxj2 ����sin1x
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e) Let L2R be arbitrary. We prove the limx!0sin
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=L cannot hold. Assume the contrary.

Then there is � > 0 such that for all 0< jxj<�,
���sin1

x
¡L

���< 1. We discuss two cases.

� L> 0. Let n2N be such that n>�¡1. We take x=
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contradiction;

� L< 0. Let n2N be such that n>�¡1. We take x=
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contradiction again. �

Question 2. (5 pts) A sequence fang is said to be �bounded above� if and only if there is M > 0
such that 8n2N, an6M.

a) (2 pts) Write down the de�nition of � fang is not bounded above�, that is write down the
working negation of � fang is bounded above�.

b) (3 pts) Prove or disprove the following statement:

If fang is not bounded above, then limn!1an=+1.

Solution.

a) 8M > 0 9n2N; an>M .

b) Let an= [1+ (¡1)n]n, n2N.

� fang is not bounded above.
Let M > 0 be arbitrary. Take n2N such that n>M and is even. Then we have

an=2n>M: (8)

Therefore fang is not bounded above.

� limn!1an=+1 is not true.
To prove this we need to show

9M > 0 8N 2N 9n>N; an6M: (9)

Take M =1. Let N 2N be arbitrary. Take n=2N +1>N . Then we have

an= [1+ (¡1)2N+1]n=06 1=M: (10)

Thus ends the proof.
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Proof. Let M > 0 be arbitrary. Set N > 22M. Then we have, for all n>N ,
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Thus limn!1Hn=+1 by de�nition. �
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