## Math 117 Fall 2014 Homework 4 Solutions

## Due Thursday Oct. 9 3pm in Assignment Box

Question 1. (10 pts) Prove the following statements by definition.
a) (2 PTS) $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$.
b) $(2 \mathrm{PTS}) \lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right]=1$.
c) (2 PTs) The sequence $\left\{(-1)^{n^{2}}\right\}$ is divergent.
d) (2 PTS) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.
e) (2 PTS) The limit $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.

## Proof.

a) Let $\varepsilon>0$ be arbitrary. Set $N>-2 \log _{2} \varepsilon$, then we have for all $n \geqslant N$,

$$
\begin{equation*}
\left|\frac{n!}{n^{n}}-0\right|=\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{1}{n} \leqslant \frac{N / 2}{n} \cdot \frac{(N / 2)-1}{n} \cdots \frac{1}{n} \leqslant\left(\frac{1}{2}\right)^{N / 2}=\left(\frac{1}{2}\right)^{-\log _{2} \varepsilon}<\varepsilon . \tag{1}
\end{equation*}
$$

Thus ends the proof.
b) First we observe that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}<\frac{1}{\sqrt{n^{2}}}+\cdots+\frac{1}{\sqrt{n^{2}}}=1 . \tag{2}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary. Set $N>\varepsilon^{-1}$, then we have for all $n \geqslant N$,

$$
\begin{align*}
\left|\frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}-1\right| & =1-\left(\frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right) \\
& <1-\left(\frac{1}{\sqrt{n^{2}+2 n+1}}+\cdots+\frac{1}{\sqrt{n^{2}+2 n+1}}\right) \\
& =1-\frac{n}{n+1}=\frac{1}{n+1}<\frac{1}{N}<\varepsilon . \tag{3}
\end{align*}
$$

Thus ends the proof.
c) Let $a \in \mathbb{R}$ be arbitrary. We prove that $\lim _{n \rightarrow \infty}(-1)^{n^{2}}=a$ cannot hold. Assume the contrary. Then there is $N \in \mathbb{N}$ such that for all $n \geqslant N$,

$$
\begin{equation*}
\left|a_{n}-a\right|<1 . \tag{4}
\end{equation*}
$$

Now we discuss two cases.

- $\quad a \geqslant 0$. Let $n=2 N+1$. Then we have $\left|a_{n}-a\right|=|(-1)-a|=1+|a| \geqslant 1$. Contradiction.
- $\quad a<0$. Let $n=2 N$. Then we have $\left|a_{n}-a\right|=|1-a|=1+|a|>1$. Contradiction.
d) Let $\varepsilon>0$ be arbitrary. Take $\delta=\varepsilon^{1 / 2}$. Then for every $0<|x-0|<\delta$ we have

$$
\begin{equation*}
\left|x^{2} \sin \frac{1}{x}-0\right|=|x|^{2}\left|\sin \frac{1}{x}\right| \leqslant|x|^{2}<\delta^{2}=\varepsilon . \tag{5}
\end{equation*}
$$

e) Let $L \in \mathbb{R}$ be arbitrary. We prove the $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=L$ cannot hold. Assume the contrary. Then there is $\delta>0$ such that for all $0<|x|<\delta,\left|\sin \frac{1}{x}-L\right|<1$. We discuss two cases.

- $L \geqslant 0$. Let $n \in \mathbb{N}$ be such that $n>\delta^{-1}$. We take $x=\left(2 n \pi+\frac{3 \pi}{2}\right)^{-1}<n^{-1}<\delta$. Then

$$
\begin{equation*}
\left|\sin \frac{1}{x}-L\right|=|-1-L|=1+L \geqslant 1 \tag{6}
\end{equation*}
$$ contradiction;

- $L<0$. Let $n \in \mathbb{N}$ be such that $n>\delta^{-1}$. We take $x=\left(2 n \pi+\frac{\pi}{2}\right)^{-1}<n^{-1}<\delta$. Then

$$
\begin{equation*}
\left|\sin \frac{1}{x}-L\right|=|1-L|=1+|L|>1 \tag{7}
\end{equation*}
$$

contradiction again.
Question 2. (5 PTs) A sequence $\left\{a_{n}\right\}$ is said to be "bounded above" if and only if there is $M>0$ such that $\forall n \in \mathbb{N}, a_{n} \leqslant M$.
a) (2 PTS) Write down the definition of " $\left\{a_{n}\right\}$ is not bounded above", that is write down the working negation of " $\left\{a_{n}\right\}$ is bounded above".
b) (3 PTS) Prove or disprove the following statement:

If $\left\{a_{n}\right\}$ is not bounded above, then $\lim _{n \rightarrow \infty} a_{n}=+\infty$.

## Solution.

a) $\forall M>0 \exists n \in \mathbb{N}, \quad a_{n}>M$.
b) Let $a_{n}=\left[1+(-1)^{n}\right] n, n \in \mathbb{N}$.

- $\left\{a_{n}\right\}$ is not bounded above.

Let $M>0$ be arbitrary. Take $n \in \mathbb{N}$ such that $n>M$ and is even. Then we have

$$
\begin{equation*}
a_{n}=2 n>M . \tag{8}
\end{equation*}
$$

Therefore $\left\{a_{n}\right\}$ is not bounded above.

- $\lim _{n \rightarrow \infty} a_{n}=+\infty$ is not true.

To prove this we need to show

$$
\begin{equation*}
\exists M>0 \forall N \in \mathbb{N} \exists n \geqslant N, \quad a_{n} \leqslant M \tag{9}
\end{equation*}
$$

Take $M=1$. Let $N \in \mathbb{N}$ be arbitrary. Take $n=2 N+1 \geqslant N$. Then we have

$$
\begin{equation*}
a_{n}=\left[1+(-1)^{2 N+1}\right] n=0 \leqslant 1=M . \tag{10}
\end{equation*}
$$

Thus ends the proof.
Question 3. (5 PTS) Let $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$. Prove by definition that $\lim _{n \rightarrow \infty} H_{n}=+\infty$.

Proof. Let $M>0$ be arbitrary. Set $N>2^{2 M}$. Then we have, for all $n \geqslant N$,

$$
\begin{align*}
H_{n} & >1+\frac{1}{2}+\cdots+\frac{1}{2^{2 M}-1}  \tag{11}\\
& =1+\left(\frac{1}{2^{1}}+\frac{1}{2^{2}-1}\right)+\left(\frac{1}{2^{2}}+\cdots+\frac{1}{2^{3}-1}\right)+\cdots+\left(\frac{1}{2^{2 M-1}}+\cdots+\frac{1}{2^{2 M}-1}\right)  \tag{12}\\
& >1+\frac{2^{1}}{2^{2}}+\frac{2^{2}}{2^{3}}+\cdots+\frac{2^{2 M-1}}{2^{2 M}}  \tag{13}\\
& =1+\frac{1}{2}+\cdots+\frac{1}{2} \quad\left(2 M-1 \frac{1}{2}, s\right)  \tag{14}\\
& >\frac{2 M}{2}=M . \tag{15}
\end{align*}
$$

Thus $\lim _{n \rightarrow \infty} H_{n}=+\infty$ by definition.

