MATH 117 FALL 2014 HOMEWORK 4

DUE THURSDAY OCT. 9 3PM IN ASSIGNMENT BOX

QUESTION 1. (10 PTS) Prove the following statements by definition.

a) (2 PTS)
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0.$$

b) (2 PTS) $\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right] = 1.$
c) (2 PTS) The sequence $\{(-1)^{n^2}\}$ is divergent.

- d) (2 pts) $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0.$
- e) (2 PTS) The limit $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

QUESTION 2. (5 PTS) A sequence $\{a_n\}$ is said to be "bounded above" if and only if there is M > 0 such that $\forall n \in \mathbb{N}$, $a_n \leq M$.

- a) (2 PTS) Write down the definition of " $\{a_n\}$ is not bounded above", that is write down the working negation of " $\{a_n\}$ is bounded above".
- b) (3 PTS) Prove or disprove the following statement:

If $\{a_n\}$ is not bounded above, then $\lim_{n\to\infty} a_n = +\infty$.

QUESTION 3. (5 PTS) Let $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}$. Prove by definition that $\lim_{n \to \infty} H_n = +\infty$.