Math 117 Fall 2014 Homework 4

Due Thursday Oct. 9 3pm in Assignment Box

Question 1. (10 PTs) Prove the following statements by definition.
a) (2 PTS $) \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$.
b) $(2 \mathrm{PTS}) \lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right]=1$.
c) (2 PTS) The sequence $\left\{(-1)^{n^{2}}\right\}$ is divergent.
d) (2 PTS $) \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.
e) (2 PTS $)$ The limit $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.

QUESTION 2. (5 PTS) A sequence $\left\{a_{n}\right\}$ is said to be "bounded above" if and only if there is $M>0$ such that $\forall n \in \mathbb{N}, a_{n} \leqslant M$.
a) (2 PTS) Write down the definition of " $\left\{a_{n}\right\}$ is not bounded above", that is write down the working negation of " $\left\{a_{n}\right\}$ is bounded above".
b) (3 PTs) Prove or disprove the following statement:

If $\left\{a_{n}\right\}$ is not bounded above, then $\lim _{n \rightarrow \infty} a_{n}=+\infty$.
Question 3. (5 PTs) Let $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$. Prove by definition that $\lim _{n \rightarrow \infty} H_{n}=+\infty$.

