Math 117 Fall 2014 Lecture 17 (Осt. 2, 2014)

Reading: Bowman: §3.C.

- In this lecture we discuss limits for a function $f: \mathbb{R} \mapsto \mathbb{R}$.
- Definition of $\lim _{x \rightarrow a} f(x)=L$ for $a, L \in \mathbb{R}$.

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x 0<|x-a|<\delta, \quad|f(x)-L|<\varepsilon . \tag{1}
\end{equation*}
$$

Example 1. Prove $\lim _{x \rightarrow 0} x^{3}=0$ by definition.
Proof. Let $\varepsilon>0$ be arbitrary. Set $0<\delta<\varepsilon^{1 / 3}$. Then $\forall x 0<|x-a|<\delta$

$$
\begin{equation*}
\left|x^{3}-0\right|=|x|^{3}<\delta^{3}<\varepsilon . \tag{2}
\end{equation*}
$$

This ends the proof.
Example 2. Prove $\lim _{x \rightarrow 1} x^{3}=1$ by definition.
Proof. Let $\varepsilon>0$ be arbitrary. Set $0<\delta<\min \left\{\frac{\varepsilon}{7}, 1\right\}$. Then for every x satisfying $0<|x-1|<\delta$ we have, by triangle inequality, $|x|<1+\delta<1+1=2$. Now for such x we calculate

$$
\begin{equation*}
\left|x^{3}-1\right|=|x-1|\left|x^{2}+x+1\right|<\delta\left[|x|^{2}+|x|+1\right]<7 \delta<7 \cdot \frac{\varepsilon}{7}=\varepsilon . \tag{3}
\end{equation*}
$$

Thus ends the proof.
Exercise 1. Let $n \in \mathbb{N}, a \in \mathbb{R}$. Prove $\lim _{x \rightarrow a} x^{n}=a^{n}$ by definition.
Exercise 2. Let $P(x)$ be a polynomial and $a \in \mathbb{R}$. Prove $\lim _{x \rightarrow a} P(x)=P(a)$ by definition.

- $a, L= \pm \infty$?
- As a, L can each be a real number or $\pm \infty$, we have nine cases in total.
- Definition for $\lim _{x \rightarrow+\infty} f(x)=L \in \mathbb{R}$.

$$
\begin{equation*}
\forall \varepsilon>0 \exists R>0 \forall x>R \quad|f(x)-L|<\varepsilon . \tag{4}
\end{equation*}
$$

- Definition for $\lim _{x \rightarrow a \in \mathbb{R}} f(x)=-\infty$.

$$
\begin{equation*}
\forall M<0 \exists \delta>0 \forall x 0<|x-a|<\delta, \quad f(x)<M \tag{5}
\end{equation*}
$$

Exercise 3. Write down the definitions for the remaining six cases.
Exercise 4. Prove $\lim _{x \rightarrow-\infty} x^{3}+x^{2}=-\infty$ by definition.

