MATH 117 FALL 2014 LECTURE 16 (Oct. 1, 2014)

Reading:

• Recall definition of limit: Let $a \in \mathbb{R}$, $\{a_n\}$ a sequence of real numbers. Say $\lim_{n\to\infty} a_n = a$ if and only if

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N, \qquad |a_n - a| < \varepsilon. \tag{1}$$

Example 1. Prove $\lim_{n\to\infty} 2^{-n} = 0$.

Proof. Let $\varepsilon > 0$ be arbitrary. Set $N > -\log_2 \varepsilon$. Then for every $n \ge N$ we have

$$|2^{-n} - 0| = 2^{-n} \leqslant 2^{-N} < \varepsilon.$$
⁽²⁾

Thus ends the proof.

Exercise 1. Prove $\lim_{n\to\infty} e^{-n} = 0$ by definition. Find the "N" for $\varepsilon = 10^{-2}, 10^{-3}, 10^{-4}$.

Exercise 2. Prove $\lim_{n\to\infty} \frac{\sqrt{n-1}}{\sqrt{n}} = 1$ by definition. Find the "N" for $\varepsilon = 10^{-2}, 10^{-3}, 10^{-4}$.

Exercise 3. Let $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. Prove by definition that $\lim_{n\to\infty} a_{n+2} = a$.

Problem 1. Prove $\lim_{n\to\infty} n^{1/n} = 1$ by definition. (Hint:¹)

- How to prove " $\lim_{n\to\infty} a_n = a$ is not true"?
 - Working negation of $\lim_{n\to\infty} a_n = a$:

$$\exists \varepsilon_0 > 0 \ \forall N \in \mathbb{N} \ \exists n_0 \ge N \qquad |a_{n_0} - a| \ge \varepsilon_0.$$
(3)

• To prove, first find out the appropriate value of ε_0 , then prove that for this particular ε_0 there holds $\forall N \in \mathbb{N} \ \exists n \ge N \qquad |a_n - a| \ge \varepsilon_0$.

THEOREM 2. If $\lim_{n\to\infty} a_n = a$, then there is no $b \neq a$ such that $\lim_{n\to\infty} a_n = b$.

Proof. Set $\varepsilon_0 = \frac{|b-a|}{2}$. Let $N \in \mathbb{N}$ be arbitrary. Now we find $n \ge N$ such that $|a_n - b| \ge \varepsilon_0$.

As $\lim_{n\to\infty} a_n = a$, there is $N_1 \in \mathbb{N}$ such that $\forall n \ge N_1$, $|a_n - a| < \varepsilon_0$. We choose one $n_0 > \max\{N, N_1\}$. Then for this n_0

$$|a_{n_0} - b| = |(a - b) - (a - a_{n_0})|$$
(4)

$$\geqslant |a-b| - |a-a_{n_0}| \tag{5}$$

$$> |a-b| - \varepsilon_0 = \varepsilon_0. \tag{6}$$

Thus ends the proof.

Exercise 4. Prove that $\lim_{n\to\infty} e^{-n} \sin n = 1$ does not hold.

- Convergence/Divergence.
 - Let $\{a_n\}$ be a sequence. If there is $a \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n = a$, then we say $\{a_n\}$ converges (is convergent). Otherwise we say $\{a_n\}$ diverges (is divergent).

More rigorously, $\{a_n\}$ is convergent if and only if

$$\exists a \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \qquad |a_n - a| < \varepsilon; \tag{7}$$

1. Set $b_n := \sqrt{n^{1/n}}$ and $h_n := b_n - 1$. Then $n h_n < 1 + n h_n \leq (1 + h_n)^n = n^{1/2}$. Therefore $h_n < n^{-1/2}$.

 $\{a_n\}$ is divergent if and only if

$$\forall a \in \mathbb{R} \; \exists \varepsilon > 0 \; \forall N \in \mathbb{N} \; \exists n \ge N \qquad |a_n - a| \ge \varepsilon.$$
(8)

0

Example 3. Prove that $\{(-1)^n\}$ is divergent.

Proof. Let $a \in \mathbb{R}$ be arbitrary. Take $\varepsilon = 1$. Let $N \in \mathbb{N}$ be arbitrary. There are two cases.

 $\begin{array}{ll} -&a \geqslant 0.\\ & \text{Take } n=2\,N+1 \geqslant N. \text{ We have } |a_n-a|=|-1-a|=1+a \geqslant 1=\varepsilon.\\ -&a<0.\\ & \text{Take } n=2\,N \geqslant N. \text{ We have } |a_n-a|=|1-a|=1+|a| \geqslant 1=\varepsilon. \end{array}$

Thus ends the proof.

Example 4. Prove that $\{n\}$ is divergent.

Proof. Let $a \in \mathbb{R}$ be arbitrary. Take $\varepsilon = 1$. Let $N \in \mathbb{N}$ be arbitrary. Take $n = \max\{N, |a| + 1\} \ge N$ where the "ceiling function" $\lceil x \rceil$ denotes the smallest integer no less than x. Now we have

$$|a_n - a| = |n - a| \ge \lceil |a| \rceil + 1 - |a| \ge 1.$$

$$\tag{9}$$

Thus ends the proof.

Exercise 5. Prove by definition that $\{e^{-1/n}(-1)^n\}$ is divergent. **Problem 2.** Prove by definiton that $\{\sin n\}$ is divergent. (Hint:²)

• Divergence to $\pm \infty$.

DEFINITION 5. A sequence $\{a_n\}$ is said to diverge to $+\infty$, denoted $\lim_{n\to\infty} a_n = +\infty$, if and only if

$$\forall M > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \qquad a_n > M. \tag{10}$$

Exercise 6. Define $\lim_{n\to\infty} a_n = -\infty$.

Exercise 7. Prove that $\lim_{n\to\infty} a_n = +\infty$ if and only if

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \ge N \qquad a_n > M.$$
⁽¹¹⁾

Exercise 8. Let $a_n = e^{n^2}$. Find $N \in \mathbb{N}$ such that $\forall n \ge N$, $a_n > M$ for $M = 10^2, 10^3, 10^4$.

Example 6. Prove $\lim_{n\to\infty} e^n = +\infty$.

Proof. Let M > 0 be arbitrary. Set $N > \ln M$. Then for every $n \ge N$ we have

$$e^n \ge e^N > M. \tag{12}$$

Thus ends the proof.

Example 7. Let $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Prove $\lim_{n \to \infty} H_n = +\infty$.

^{2.} For x > 0 denote by $\{x\}$ the remainder of $x \div (2\pi)$, that is $\{x\} \in [0, 2\pi)$ and $x = 2\pi k + \{x\}$ for some $k \in \mathbb{Z}$. Now prove that for every $\delta > 0$ there is $n \in \mathbb{N}$ such that $\{n\} < \delta$.

Idea. The following argument is due to middle age polymath Nicole Oresme (1320 – 1382):

$$1 + \frac{1}{2} + \dots = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \dots + \frac{1}{7}\right) + \left(\frac{1}{8} + \dots + \frac{1}{15}\right) + \dots$$

$$> \frac{1}{2} + 2 \times \frac{1}{4} + 4 \times \frac{1}{8} + 8 \times \frac{1}{16} + \dots$$

$$= \frac{1}{2} + \frac{1}{2} + \dots = \frac{+\infty}{2} = +\infty.$$
(13)

Exercise 9. The above is **NOT** a proof by our modern standard. Turn this idea into a rigorous proof (by definition) of $\lim_{n\to\infty} H_n = +\infty$.

Problem 3. Apply the same idea to study $\lim_{n\to\infty} H_{n,p}$ where

$$H_{n,p} := 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$
 (14)

with p > 0.

• More exercises.

In all of the following you should prove by definition.

- Exercise 10. Prove $\lim_{n\to\infty} \frac{n!}{n^n} = 0$. Exercise 11. Prove $\lim_{n\to\infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+n)^2} \right] = 0$. Exercise 12. Prove $\lim_{n\to\infty} \left[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{n+n}} \right] = +\infty$. Exercise 13. Prove $\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right] = 1$.
- **Exercise 14.** Let a, b > 0. Prove $\lim_{n \to \infty} (a^n + b^n)^{1/n} = \max \{a, b\}$.

Exercise 15. For $n \in \mathbb{N}$ let $\nu(n)$ be the number of distinct prime factors of n. For example $\nu(12) = 2$. Prove $\lim_{n \to \infty} \frac{\nu(n)}{n} = 0$.

Problem 4. Let $\nu(n)$ be defined as in the above exercise. Let $a \ge 0$. Study $\lim_{n\to\infty} \frac{\nu(n)}{n^a}$.

Problem 5. The Dirichlet function is defined as

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}.$$
(15)

Prove that

$$D(x) = \lim_{n \to \infty} \left[\lim_{m \to \infty} \left(\cos(n! \, \pi \, x) \right)^{2m} \right]. \tag{16}$$