Math 117 Fall 2014 Lecture 16 (Oct. 1, 2014)

Reading:

- Recall definition of limit: Let $a \in \mathbb{R},\left\{a_{n}\right\}$ a sequence of real numbers. Say $\lim _{n \rightarrow \infty} a_{n}=a$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geqslant N, \quad\left|a_{n}-a\right|<\varepsilon . \tag{1}
\end{equation*}
$$

Example 1. Prove $\lim _{n \rightarrow \infty} 2^{-n}=0$.
Proof. Let $\varepsilon>0$ be arbitrary. Set $N>-\log _{2} \varepsilon$. Then for every $n \geqslant N$ we have

$$
\begin{equation*}
\left|2^{-n}-0\right|=2^{-n} \leqslant 2^{-N}<\varepsilon . \tag{2}
\end{equation*}
$$

Thus ends the proof.
Exercise 1. Prove $\lim _{n \rightarrow \infty} e^{-n}=0$ by definition. Find the " N " for $\varepsilon=10^{-2}, 10^{-3}, 10^{-4}$.
Exercise 2. Prove $\lim _{n \rightarrow \infty} \frac{\sqrt{n}-1}{\sqrt{n}}=1$ by definition. Find the " N " for $\varepsilon=10^{-2}, 10^{-3}, 10^{-4}$.
Exercise 3. Let $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Prove by definition that $\lim _{n \rightarrow \infty} a_{n+2}=a$.
Problem 1. Prove $\lim _{n \rightarrow \infty} n^{1 / n}=1$ by definition. (Hint: ${ }^{1}$)

- How to prove " $\lim _{n \rightarrow \infty} a_{n}=a$ is not true"?
- Working negation of $\lim _{n \rightarrow \infty} a_{n}=a$:

$$
\begin{equation*}
\exists \varepsilon_{0}>0 \forall N \in \mathbb{N} \exists n_{0} \geqslant N \quad\left|a_{n_{0}}-a\right| \geqslant \varepsilon_{0} . \tag{3}
\end{equation*}
$$

- To prove, first find out the appropriate value of ε_{0}, then prove that for this particular ε_{0} there holds $\forall N \in \mathbb{N} \exists n \geqslant N \quad\left|a_{n}-a\right| \geqslant \varepsilon_{0}$.

Theorem 2. If $\lim _{n \rightarrow \infty} a_{n}=a$, then there is no $b \neq a$ such that $\lim _{n \rightarrow \infty} a_{n}=b$.
Proof. Set $\varepsilon_{0}=\frac{|b-a|}{2}$. Let $N \in \mathbb{N}$ be arbitrary. Now we find $n \geqslant N$ such that $\left|a_{n}-b\right| \geqslant \varepsilon_{0}$.

As $\lim _{n \rightarrow \infty} a_{n}=a$, there is $N_{1} \in \mathbb{N}$ such that $\forall n \geqslant N_{1},\left|a_{n}-a\right|<\varepsilon_{0}$. We choose one $n_{0}>\max \left\{N, N_{1}\right\}$. Then for this n_{0}

$$
\begin{align*}
\left|a_{n_{0}}-b\right| & =\left|(a-b)-\left(a-a_{n_{0}}\right)\right| \tag{4}\\
& \geqslant|a-b|-\left|a-a_{n_{0}}\right| \tag{5}\\
& >|a-b|-\varepsilon_{0}=\varepsilon_{0} . \tag{6}
\end{align*}
$$

Thus ends the proof.
Exercise 4. Prove that $\lim _{n \rightarrow \infty} e^{-n} \sin n=1$ does not hold.

- Convergence/Divergence.
- Let $\left\{a_{n}\right\}$ be a sequence. If there is $a \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=a$, then we say $\left\{a_{n}\right\}$ converges (is convergent). Otherwise we say $\left\{a_{n}\right\}$ diverges (is divergent).

More rigorously, $\left\{a_{n}\right\}$ is convergent if and only if

$$
\begin{equation*}
\exists a \in \mathbb{R} \forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geqslant N \quad\left|a_{n}-a\right|<\varepsilon ; \tag{7}
\end{equation*}
$$

1. Set $b_{n}:=\sqrt{n^{1 / n}}$ and $h_{n}:=b_{n}-1$. Then $n h_{n}<1+n h_{n} \leqslant\left(1+h_{n}\right)^{n}=n^{1 / 2}$. Therefore $h_{n}<n^{-1 / 2}$.
$\left\{a_{n}\right\}$ is divergent if and only if

$$
\begin{equation*}
\forall a \in \mathbb{R} \exists \varepsilon>0 \forall N \in \mathbb{N} \exists n \geqslant N \quad\left|a_{n}-a\right| \geqslant \varepsilon \tag{8}
\end{equation*}
$$

0
Example 3. Prove that $\left\{(-1)^{n}\right\}$ is divergent.
Proof. Let $a \in \mathbb{R}$ be arbitrary. Take $\varepsilon=1$. Let $N \in \mathbb{N}$ be arbitrary. There are two cases.

$$
\begin{aligned}
& -\quad a \geqslant 0 . \\
& \quad \text { Take } n=2 N+1 \geqslant N . \text { We have }\left|a_{n}-a\right|=|-1-a|=1+a \geqslant 1=\varepsilon . \\
& -\quad a<0 . \\
& \quad \text { Take } n=2 N \geqslant N . \text { We have }\left|a_{n}-a\right|=|1-a|=1+|a| \geqslant 1=\varepsilon .
\end{aligned}
$$

Thus ends the proof.
Example 4. Prove that $\{n\}$ is divergent.
Proof. Let $a \in \mathbb{R}$ be arbitrary. Take $\varepsilon=1$. Let $N \in \mathbb{N}$ be arbitrary. Take $n=\max \{N$, $\lceil|a|\rceil+1\} \geqslant N$ where the "ceiling function" $\lceil x\rceil$ denotes the smallest integer no less than x. Now we have

$$
\begin{equation*}
\left|a_{n}-a\right|=|n-a| \geqslant\lceil|a|\rceil+1-|a| \geqslant 1 . \tag{9}
\end{equation*}
$$

Thus ends the proof.
Exercise 5. Prove by definition that $\left\{e^{-1 / n}(-1)^{n}\right\}$ is divergent.
Problem 2. Prove by defintion that $\{\sin n\}$ is divergent. (Hint: ${ }^{2}$)

- Divergence to $\pm \infty$.

Definition 5. A sequence $\left\{a_{n}\right\}$ is said to diverge to $+\infty$, denoted $\lim _{n \rightarrow \infty} a_{n}=+\infty$, if and only if

$$
\begin{equation*}
\forall M>0 \exists N \in \mathbb{N} \forall n \geqslant N \quad a_{n}>M . \tag{10}
\end{equation*}
$$

Exercise 6. Define $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
Exercise 7. Prove that $\lim _{n \rightarrow \infty} a_{n}=+\infty$ if and only if

$$
\begin{equation*}
\forall M \in \mathbb{R} \exists N \in \mathbb{N} \forall n \geqslant N \quad a_{n}>M . \tag{11}
\end{equation*}
$$

Exercise 8. Let $a_{n}=e^{n^{2}}$. Find $N \in \mathbb{N}$ such that $\forall n \geqslant N, a_{n}>M$ for $M=10^{2}, 10^{3}, 10^{4}$.
Example 6. Prove $\lim _{n \rightarrow \infty} e^{n}=+\infty$.
Proof. Let $M>0$ be arbitrary. Set $N>\ln M$. Then for every $n \geqslant N$ we have

$$
\begin{equation*}
e^{n} \geqslant e^{N}>M \tag{12}
\end{equation*}
$$

Thus ends the proof.
Example 7. Let $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}$. Prove $\lim _{n \rightarrow \infty} H_{n}=+\infty$.

[^0]Idea. The following argument is due to middle age polymath Nicole Oresme (1320 1382):

$$
\begin{align*}
1+\frac{1}{2}+\cdots & =1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\cdots+\frac{1}{7}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{15}\right)+\cdots \\
& >\frac{1}{2}+2 \times \frac{1}{4}+4 \times \frac{1}{8}+8 \times \frac{1}{16}+\cdots \\
& =\frac{1}{2}+\frac{1}{2}+\cdots=\frac{+\infty}{2}=+\infty \tag{13}
\end{align*}
$$

Exercise 9. The above is NOT a proof by our modern standard. Turn this idea into a rigorous proof (by definition) of $\lim _{n \rightarrow \infty} H_{n}=+\infty$.

Problem 3. Apply the same idea to study $\lim _{n \rightarrow \infty} H_{n, p}$ where

$$
\begin{equation*}
H_{n, p}:=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots \tag{14}
\end{equation*}
$$

with $p>0$.

- More exercises.

In all of the following you should prove by definition.
Exercise 10. Prove $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$.
Exercise 11. Prove $\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{(n+n)^{2}}\right]=0$.
Exercise 12. Prove $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\cdots+\frac{1}{\sqrt{n+n}}\right]=+\infty$.
Exercise 13. Prove $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right]=1$.
Exercise 14. Let $a, b>0$. Prove $\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{1 / n}=\max \{a, b\}$.
Exercise 15. For $n \in \mathbb{N}$ let $\nu(n)$ be the number of distinct prime factors of n. For example $\nu(12)=2$. Prove $\lim _{n \rightarrow \infty} \frac{\nu(n)}{n}=0$.
Problem 4. Let $\nu(n)$ be defined as in the above exercise. Let $a \geqslant 0$. Study $\lim _{n \rightarrow \infty} \frac{\nu(n)}{n^{a}}$.
Problem 5. The Dirichlet function is defined as

$$
D(x)=\left\{\begin{array}{ll}
1 & x \in \mathbb{Q} \tag{15}\\
0 & x \notin \mathbb{Q}
\end{array} .\right.
$$

Prove that

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty}\left[\lim _{m \rightarrow \infty}(\cos (n!\pi x))^{2 m}\right] \tag{16}
\end{equation*}
$$

[^0]: 2. For $x>0$ denote by $\{x\}$ the remainder of $x \div(2 \pi)$, that is $\{x\} \in[0,2 \pi)$ and $x=2 \pi k+\{x\}$ for some $k \in \mathbb{Z}$. Now prove that for every $\delta>0$ there is $n \in \mathbb{N}$ such that $\{n\}<\delta$.
