Math 117 Fall 2014 Lecture 15 (Sept. 29, 2014)

Reading: Bowman: §2.A, §2.B.

- Sequence.

Definition 1. A sequence of real numbers is a function $a: \mathbb{N} \mapsto \mathbb{R}$.
We often write $a(n)$ as a_{n} and denote the whole sequence by $\left\{a_{n}\right\}$ or $a_{1}, a_{2}, a_{3}, \ldots$
Note. The difference between the sequence $a_{1}, a_{2}, a_{3}, \ldots$ and the set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is that in a sequence the order matters. $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ and $\left\{a_{2}, a_{1}, a_{3}, \ldots\right\}$ are the same set but a_{1}, a_{2}, a_{3}, \ldots and $a_{2}, a_{1}, a_{3}, \ldots$ are not the same sequence.

- Limits of increasing and decreasing sequences.

Lemma 2. Let $\left\{a_{n}\right\}$ be a increasing sequence. Let $A:=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ be the set consisting of all the a_{n} 's. Let $a \in \mathbb{R}$ be an upper bound of A. Then $a=\sup A$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geqslant N \quad a-a_{n}<\varepsilon . \tag{1}
\end{equation*}
$$

Remark 3. We see that it is reasonable to call $\sup A$ the "limit" of $\left\{a_{n}\right\}$.
Proof. Since we need to prove "if and only if", there are two steps.

- If. We need to show (1) implies $a=\sup A$.

Let $b<a$ be arbitrary. Set $\varepsilon=a-b$. Then there is $N \in \mathbb{N}$ such that for every $n \geqslant N, a-a_{n}<a-b$ which means $a_{n}>b$. As all these $a_{n} \in A, b$ is not a upper bound of A. Therefore a is the lowest upper bound, that is $\sup A$.

- Only if. We need to show $a=\sup A$ implies (1).

Let $\varepsilon>0$ be arbitrary. Set $b=a-\varepsilon$. As $b<a=\sup A$ it is not a upper bound of A. Therefore there is $N \in \mathbb{N}$ such that $a_{N}>b$. This gives

$$
\begin{equation*}
a-a_{N}<a-b=\varepsilon . \tag{2}
\end{equation*}
$$

Now as $\left\{a_{n}\right\}$ is increasing, we have for every $n \geqslant N, a_{n} \geqslant a_{N}$ which gives $a-a_{n} \leqslant$ $a-a_{N}<\varepsilon$. Therefore (1) holds.

Exercise 1. Formulate and prove a similar result for decreasing sequences.

- Limit for a sequence.

Definition 4. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. A number $a \in \mathbb{R}$ is said to be the limit of $\left\{a_{n}\right\}$, denoted $a=\lim _{n \rightarrow \infty} a_{n}$, if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geqslant N, \quad\left|a_{n}-a\right|<\varepsilon . \tag{3}
\end{equation*}
$$

Example 5. Find the limit of $\left\{\frac{(-1)^{n}}{n}\right\}$. Justify.
Solution. We guess $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$. Now we prove this.
Let $\varepsilon>0$ be arbitrary. Set $N>\varepsilon^{-1}$. Then we have for all $n \geqslant N$

$$
\begin{equation*}
\left|\frac{(-1)^{n}}{n}-0\right|=\frac{1}{n} \leqslant \frac{1}{N}<\frac{1}{\varepsilon^{-1}}=\varepsilon . \tag{4}
\end{equation*}
$$

Thus ends the proof.
Remark 6. It is easy to see that the choice $N>\varepsilon^{-1}$ can only be made after most of the calculations in (4) is done. Only when we reach $\left|\frac{(-1)^{n}}{n}-0\right| \leqslant \frac{1}{N}$ has it become clear that the choice of N should be such that $\frac{1}{N}<\varepsilon$.

Example 7. Prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sin n^{2}}{\sqrt{n}}=0 \tag{5}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be arbitrary. Set $N>\varepsilon^{-2}$. Then for every $n \geqslant N$,

$$
\begin{equation*}
\left|\frac{\sin n^{2}}{\sqrt{n}}-0\right|=\frac{\left|\sin n^{2}\right|}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{N}}<\varepsilon . \tag{6}
\end{equation*}
$$

The proof ends.

Exercise 2. Prove
by definition.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e^{-n}=0 . \tag{7}
\end{equation*}
$$

Exercise 3. Let $\left\{a_{n}\right\}$ be a sequence satisfying $\lim _{n \rightarrow \infty} a_{n}=0$. Prove by definition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}^{2}=0 \tag{8}
\end{equation*}
$$

Exercise 4. Let $\left\{a_{n}\right\}$ be a sequence satisfying $\lim _{n \rightarrow \infty} a_{n}=0$. Prove by definition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt{\left|a_{n}\right|}=0 \tag{9}
\end{equation*}
$$

