Math 117 Fall 2014 Homework 3

Due Thursday Oct. 2 3pm in Assignment Box

Question 1. (5 PTs) Let $B \subseteq Y$ and $f: X \mapsto Y$. Prove that $f\left(f^{-1}(B)\right) \subseteq B$. Can we replace \subseteq by =? Justify your claim.

Question 2. (5 Pts) Prove

$$
\begin{equation*}
\binom{n+d-2}{d-2}+\binom{n+d-3}{d-2}=\binom{n+d-1}{n}-\binom{n+d-3}{n-2} \tag{1}
\end{equation*}
$$

for every pair of natural numbers $n, d \geqslant 2$.
Question 3. (5 PTs) A function $f: \mathbb{R} \mapsto \mathbb{R}$ is said to be "Lipschitz" if the following holds:

$$
\begin{equation*}
\exists M>0 \quad \forall x, y \in \mathbb{R} \quad|f(x)-f(y)| \leqslant M|x-y| \tag{2}
\end{equation*}
$$

a) (2 PT) Find the working negation to (2).
b) (3 PTS) Is $f(x)=x$ Lipschitz? Is $g(x)=x^{2}$ Lipschitz? Justify your claims.

QUESTION 4. (5 PTS) Recall that in the computation of $\sqrt{2}$, we have the

- Babylonian method: $a_{1}>0, b_{1}=2 / a_{1}$,

$$
\begin{equation*}
a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), \quad b_{n+1}=\frac{1}{\frac{1}{2}\left(\frac{1}{a_{n}}+\frac{1}{b_{n}}\right)}, \tag{3}
\end{equation*}
$$

- and Newton's method: $x_{1}>0$,

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} . \tag{4}
\end{equation*}
$$

Someone in our class made the conjecture that the two methods are identical. Prove or disprove his conjecture.

