MATH 117 FALL 2014 LECTURE 14 (SEPT. 25, 2014)

Reading: 314 Proof and Logic: §2; 314 Midterm Review §A, §D.

- Mathematical statement:
 - A statement that is either true or false, but not both.
- Propositional Logic: Statements and their combinations, no variable involved.
 - \circ Truth value.

If a statement A is true, we say A = T; Otherwise A must be false and we say A = F.

- Conjunction.
 - $A \wedge B$ is true if and only if both A, B are true. For example $(3=1) \wedge (\sqrt{5} \notin \mathbb{Q})$ is false while $(3 \neq 1) \wedge (\sqrt{5} \notin \mathbb{Q})$ is true.
 - Reads: "A and B".
- Disjunction.
 - $A \lor B$ is false if and only if both A, B are false. Thus $(3 = 1) \lor (\sqrt{5} \notin \mathbb{Q})$ is true but $(3 = 1) \lor (\sqrt{5} \in \mathbb{Q})$ is false.
 - Reads: "A or B".
- Negation.
 - − ¬A is true if and only if A is false. Thus $\neg(3=1)$ is true while $\neg(\sqrt{5} \notin \mathbb{Q})$ is false.
 - Reads: "Not A".
- \circ Conditional.
 - $A \Longrightarrow B$ is false if and only if A is true and B is false.
 - Reads: "A implies B", "If A then B", "B if A", "A only if B", "A is sufficient for B", "B is necessary for A".
- \circ Bi-conditional.
 - $A \iff B$ is defined as

$$(A \Longrightarrow B) \land (B \Longrightarrow A). \tag{1}$$

• Truth table.

Any statement in propositional logic is the result of combining finitely many, say m, "atom" statements through $\land, \lor, \neg, \Longrightarrow, \iff$. As each "atom" statement can only take true or false, we see that there are only 2^m possible situations. Therefore all the proofs in propositional logic can be done with the "truth table", where every possible truth value assignment to the m "atom" statements are simply listed.

Example 1. Prove that $A \Longrightarrow B$ is equivalent to $\neg A \lor B$.

Proof. We list all possible cases.

Thus the proof ends.

- Predicative logic.
 - Predicative logic introduces variables into statements. For example,

$$\forall x \exists y \quad y = x^2. \tag{3}$$

Reads: "For every x there is y such that $y = x^2$."

- $\circ \quad \forall : For every, for all.$
 - A shorthand of conjunction of any number (could be infinite) of statements.

$$\forall x \in \mathbb{N}, \qquad x \ge 1 \tag{4}$$

is a shorthand for

$$(1 \ge 1) \land (2 \ge 1) \land (3 \ge 1) \cdots \tag{5}$$

- $\circ \quad \exists: \text{ There exists.}$
 - A shorthand of disjunction.

$$\exists x \in \mathbb{N}, \qquad x \ge 1 \tag{6}$$

is a shorthand for

$$(1 \ge 1) \lor (2 \ge 1) \lor (3 \ge 1) \lor \cdots \tag{7}$$

 \circ The order is important.

For example $\forall x \exists y \quad y = x^2$ is true while $\exists y \forall x \quad y = x^2$ is false.

- \circ $\,$ Working negation.
 - Often (for example when doing proof by contradiction) we need to use the negation of a certain statement, say A. Usually, simply writing down the negative statement $\neg A$ is not helpful. It is necessary to find another positive statement B that is equivalent to $\neg A$. This B is called the "working negation" of A.
 - For example, when we set up proof by contradiction for $\sqrt{2} \notin \mathbb{Q}$, we do not start with the negative statement $\neg(\sqrt{2} \notin \mathbb{Q})$ if we do we would go nowhere but with the positive "working negation" $\sqrt{2} \in \mathbb{Q}$.
 - Rules for obtaining working negation: $\forall \leftrightarrow \exists$. Thus the working negation of

$$\forall x \exists y \forall z \quad P(x, y, z) \tag{8}$$

is

$$\exists x \forall y \exists z \qquad \neg P(x, y, z). \tag{9}$$

Example 2. Let $A \subseteq \mathbb{R}$. A function $f: A \mapsto \mathbb{R}$ is uniformly continuous on A if and only if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A \text{ satisfying } |x - y| < \delta \qquad |f(x) - f(y)| < \varepsilon.$$
(10)

Then a function f that is **not** uniformly continuous on A is characterized by the working negation of (10):

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in A \text{ satisfying } |x - y| < \delta \qquad |f(x) - f(y)| \ge \varepsilon.$$
(11)

Note. Please make sure you understand why the red parts in the above example stays unchanged.

Exercise 1. A function f is continuous at x_0 if and only if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ \text{satisfying} \ |x - x_0| < \delta \qquad |f(x) - f(x_0)| < \varepsilon.$$
(12)

Characterize a function that is not continuous at x_0 .

Exercise 2. A function $f: A \mapsto \mathbb{R}$ is bounded if and only if

$$\exists M > 0 \ \forall x \in A \qquad |f(x)| \leqslant M. \tag{13}$$

Characterize a unbounded function.

Exercise 3. A function $f: \mathbb{R} \mapsto \mathbb{R}$ is monotone if and only if it is either increasing or decreasing. Characterize a function that is no monotone.