Math 117 Fall 2014 Lecture 14 (Sept. 25, 2014)

Reading: 314 Proof and Logic: §2; 314 Midterm Review §A, §D.

- Mathematical statement:

A statement that is either true or false, but not both.

- Propositional Logic: Statements and their combinations, no variable involved.
- Truth value.

If a statement A is true, we say $A=T$; Otherwise A must be false and we say $A=F$.

- Conjunction.
- $A \wedge B$ is true if and only if both A, B are true. For example $(3=1) \wedge(\sqrt{5} \notin \mathbb{Q})$ is false while $(3 \neq 1) \wedge(\sqrt{5} \notin \mathbb{Q})$ is true.
- Reads: "A and B".
- Disjunction.
- $A \vee B$ is false if and only if both A, B are false. Thus $(3=1) \vee(\sqrt{5} \notin \mathbb{Q})$ is true but $(3=1) \vee(\sqrt{5} \in \mathbb{Q})$ is false.
- Reads: "A or B".
- Negation.
- $\neg A$ is true if and only if A is false. Thus $\neg(3=1)$ is true while $\neg(\sqrt{5} \notin \mathbb{Q})$ is false.
- Reads: "Not A".
- Conditional.
- $A \Longrightarrow B$ is false if and only if A is true and B is false.
- Reads: "A implies B", "If A then B", "B if A", "A only if B", "A is sufficient for B ", "B is necessary for A ".
- Bi-conditional.
$-A \Longleftrightarrow B$ is defined as

$$
\begin{equation*}
(A \Longrightarrow B) \wedge(B \Longrightarrow A) \tag{1}
\end{equation*}
$$

- Truth table.

Any statement in propositional logic is the result of combining finitely many, say m, "atom" statements through $\wedge, \vee, \neg, \Longrightarrow, \Longleftrightarrow$. As each "atom" statement can only take true or false, we see that there are only 2^{m} possible situations. Therefore all the proofs in propositional logic can be done with the "truth table", where every possible truth value assignment to the m "atom" statements are simply listed.

Example 1. Prove that $A \Longrightarrow B$ is equivalent to $\neg A \vee B$.
Proof. We list all possible cases.

A	B	$A \Longrightarrow B$	$\neg A \vee B$
T	F	F	F
F	T	T	T
T	T	T	T
F	F	T	T

Thus the proof ends.

- Predicative logic.
- Predicative logic introduces variables into statements. For example,

$$
\begin{equation*}
\forall x \exists y \quad y=x^{2} . \tag{3}
\end{equation*}
$$

Reads: "For every x there is y such that $y=x^{2}$."

- $\quad \forall$: For every, for all.
- A shorthand of conjunction of any number (could be infinite) of statements.

$$
\begin{equation*}
\forall x \in \mathbb{N}, \quad x \geqslant 1 \tag{4}
\end{equation*}
$$

is a shorthand for

$$
\begin{equation*}
(1 \geqslant 1) \wedge(2 \geqslant 1) \wedge(3 \geqslant 1) \cdots \tag{5}
\end{equation*}
$$

- ヨ: There exists.
- A shorthand of disjunction.

$$
\begin{equation*}
\exists x \in \mathbb{N}, \quad x \geqslant 1 \tag{6}
\end{equation*}
$$

is a shorthand for

$$
\begin{equation*}
(1 \geqslant 1) \vee(2 \geqslant 1) \vee(3 \geqslant 1) \vee \cdots \tag{7}
\end{equation*}
$$

- The order is important.

For example $\forall x \exists y \quad y=x^{2}$ is true while $\exists y \forall x \quad y=x^{2}$ is false.

- Working negation.
- Often (for example when doing proof by contradiction) we need to use the negation of a certain statement, say A. Usually, simply writing down the negative statement $\neg A$ is not helpful. It is necessary to find another positive statement B that is equivalent to $\neg A$. This B is called the "working negation" of A.
- For example, when we set up proof by contradiction for $\sqrt{2} \notin \mathbb{Q}$, we do not start with the negative statement $\neg(\sqrt{2} \notin \mathbb{Q})$ - if we do we would go nowhere - but with the positive "working negation" $\sqrt{2} \in \mathbb{Q}$.
- Rules for obtaining working negation: $\forall \longleftrightarrow \exists$. Thus the working negation of

$$
\begin{equation*}
\forall x \exists y \forall z \quad P(x, y, z) \tag{8}
\end{equation*}
$$

is

$$
\begin{equation*}
\exists x \forall y \exists z \quad \neg P(x, y, z) . \tag{9}
\end{equation*}
$$

Example 2. Let $A \subseteq \mathbb{R}$. A function $f: A \mapsto \mathbb{R}$ is uniformly continuous on A if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x, y \in A \text { satisfying }|x-y|<\delta \quad|f(x)-f(y)|<\varepsilon . \tag{10}
\end{equation*}
$$

Then a function f that is not uniformly continuous on A is characterized by the working negation of (10):

$$
\begin{equation*}
\exists \varepsilon>0 \forall \delta>0 \exists x, y \in A \text { satisfying }|x-y|<\delta \quad|f(x)-f(y)| \geqslant \varepsilon \tag{11}
\end{equation*}
$$

Note. Please make sure you understand why the red parts in the above example stays unchanged.

Exercise 1. A function f is continuous at x_{0} if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x \text { satisfying }\left|x-x_{0}\right|<\delta \quad\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon . \tag{12}
\end{equation*}
$$

Characterize a function that is not continuous at x_{0}.
Exercise 2. A function $f: A \mapsto \mathbb{R}$ is bounded if and only if

$$
\begin{equation*}
\exists M>0 \forall x \in A \quad|f(x)| \leqslant M . \tag{13}
\end{equation*}
$$

Characterize a unbounded function.
Exercise 3. A function $f: \mathbb{R} \mapsto \mathbb{R}$ is monotone if and only if it is either increasing or decreasing. Characterize a function that is no monotone.

