Math 117 Fall 2014 Lecture 13 (Sept. 24, 2014)

Reading: Dr. Bowman's book: §1.E, §1.F.

- Induction.
- To prove that infinitely many statements are true. These infinitely many statements must be ordered through a parameter $n \in \mathbb{N} .{ }^{1}$ That is these statements can be listed as $P(1), P(2), P(3), \ldots$ For example, the claim " $2^{2^{n}}+1$ is prime for every $n \in \mathbb{N}$ " is a list of infinitely many statements:

$$
\begin{aligned}
& P(1): 2^{2^{1}}+1 \text { is prime; } \\
& P(2): 2^{2^{2}}+1 \text { is prime; } \\
& P(3): 2^{2^{3}}+1 \text { is prime; }
\end{aligned}
$$

- Two steps.
- Show that $P(1)$ is true;
- Show that, if $P(k)$ is true then $P(k+1)$ is true.
- Why does it work?

That induction works on \mathbb{N} is in fact a axiom on the set of natural numbers:
Axiom. The set \mathbb{N} has the following property.
For any $S \subseteq \mathbb{N}$, if

1. $1 \in S$, and
2. Once $k \in S$ there must hold $k+1 \in S$,
then $S=\mathbb{N}$.
Example 1. Prove that $1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
Proof. Denote the statements by $P(n)$, that is let $P(1): 1^{3}=\left(\frac{1(1+1)}{2}\right)^{2}, P(2): 1^{3}+2^{3}=$ $\left(\frac{2(2+1)}{2}\right)^{2}$, and so on. We check

- $\quad P(1)$ is true. This is obvious as $\left(\frac{1(1+1)}{2}\right)^{2}=1$.
- If $P(k)$ is true then so is $P(k+1)$.

Since $P(k)$ is true, we have

$$
\begin{equation*}
1^{3}+2^{3}+\cdots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2} . \tag{1}
\end{equation*}
$$

[^0]Adding $(k+1)^{3}$ to both sides we have

$$
\begin{align*}
1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3} & =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
& =\left(\frac{k}{2}\right)^{2}(k+1)^{2}+(k+1)^{3} \\
& =\left[\left(\frac{k}{2}\right)^{2}+k+1\right](k+1)^{2} \\
& =\left(k^{2}+4 k+4\right) \frac{(k+1)^{2}}{4} \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} \\
& =\left(\frac{(k+1)((k+1)+1)}{2}\right)^{2} . \tag{2}
\end{align*}
$$

we see that $P(k+1)$ must hold and the proof ends.
Example 2. Prove that $\sqrt{5}, \sqrt{5 \sqrt{5}}, \ldots$ are all strictly less than 5 .
Proof. Denote $a_{n}:=\sqrt{5 \sqrt{5 \sqrt{\cdots \sqrt{5}}}}$ (n square roots). Then we need to prove that all of the $P(n): a_{n}<5$ are true.

- $P(1)$ is true. Clearly $a_{1}=\sqrt{5}<5$.
- If $P(k)$ is true then so is $P(k+1)$. Assume $a_{k}<5$. Then

$$
\begin{equation*}
a_{k+1}=\sqrt{5 a_{k}}<\sqrt{5 \cdot 5}=5 . \tag{3}
\end{equation*}
$$

Thus ends the proof.
Exercise 1. Let $x \neq 1$. Prove

$$
\begin{equation*}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Exercise 2. Let $n \geqslant 5$. Prove

$$
\begin{equation*}
2^{n}>n^{2} . \tag{5}
\end{equation*}
$$

Problem 1. Prove the following. Let $n \in \mathbb{N}, x \neq k \pi$ for any $k \in \mathbb{Z}$.

$$
\begin{gather*}
\sin x+\sin 2 x+\cdots+\sin (n x)=\frac{\sin \left(\frac{n+1}{2} x\right) \sin \left(\frac{n x}{2}\right)}{\sin \left(\frac{x}{2}\right)} \tag{6}\\
\frac{1}{2}+\cos x+\cos 2 x+\cdots+\cos n x=\frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 \sin \left(\frac{x}{2}\right)} \tag{7}\\
\frac{1}{2} \tan \left(\frac{x}{2}\right)+\frac{1}{4} \tan \left(\frac{x}{4}\right)+\cdots+\frac{1}{2^{n}} \tan \left(\frac{x}{2^{n}}\right)=\frac{1}{2^{n}} \cot \frac{x}{2^{n}}-\cot x . \tag{8}
\end{gather*}
$$

- Binomial Theorem.
- It is clear that

$$
\begin{equation*}
(a+b)^{n}=c_{0} a^{0} b^{n}+c_{1} a^{1} b^{n-1}+\cdots+c_{n} a^{n} b^{0} . \tag{9}
\end{equation*}
$$

- $c_{k}=$ Number of ways to choose $k a$'s from the $n a^{\prime} s$. For example, $n=3, k=2$,

$$
\begin{align*}
& (a+b)(a+b)(a+b) \Longrightarrow a^{2} b ; \tag{10}\\
& (a+b)(a+b)(a+b) \Longrightarrow a^{2} b \tag{11}\\
& (a+b)(a+b)(a+b) \Longrightarrow a^{2} b \tag{12}
\end{align*}
$$

Therefore at the end we have $3 a^{2} b$ in the expansion.

- Through counting we have

$$
\begin{equation*}
c_{k}=\binom{n}{k}:=\frac{n!}{k!(n-k)!} . \tag{13}
\end{equation*}
$$

If we check the c_{0} term in the expansion, we see that it makes sense to define $\binom{n}{0}=1$.

- Therefore we have the binomial expansion

$$
\begin{equation*}
(a+b)^{n}=\binom{n}{0} a^{0} b^{n}+\cdots+\binom{n}{k} a^{k} b^{n-k}+\cdots+\binom{n}{n} a^{n} b^{0}=\sum_{k=0}^{\infty}\binom{n}{k} a^{k} b^{n-k} \tag{14}
\end{equation*}
$$

Problem 2. Let $h>0$ and $f: \mathbb{R} \mapsto \mathbb{R}$ be a function. One could define the "finite difference operator" as

$$
\begin{equation*}
\left(\triangle_{h} f\right)(x):=f(x)-f(x-h) . \tag{15}
\end{equation*}
$$

Further define

$$
\begin{equation*}
\triangle_{h}^{2} f:=\triangle_{h}\left(\triangle_{h} f\right), \quad \triangle_{h}^{3} f:=\triangle_{h}\left(\triangle_{h}^{2} f\right), \quad \text { and so on. } \tag{16}
\end{equation*}
$$

Prove

$$
\begin{equation*}
\left(\triangle_{h}^{n} f\right)(x)=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} f(x-j h) . \tag{17}
\end{equation*}
$$

- Properties.

$$
\begin{aligned}
& -\quad\binom{n}{k}=\binom{n}{n-k} . \text { Note that this is consistent with the definition }\binom{n}{0}=1 . \\
& -\quad\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} .
\end{aligned}
$$

Proof. We have

$$
\begin{align*}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{(n+1-k) n!}{k!(n-k+1)!}+\frac{k \cdot n!}{k!(n-k+1)!} \\
& =\frac{[(n+1-k)+k] n!}{k!(n-k+1)!} \\
& =\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k} \tag{18}
\end{align*}
$$

The proof ends.
Exercise 3. Prove the binomial expansion theorem through induction with the help of the above identity.

- We prove

$$
\begin{equation*}
1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}>\left(1+\frac{1}{n}\right)^{n} \tag{19}
\end{equation*}
$$

for every $n \in \mathbb{N}$.

Proof. Using binomial expansion we have

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k} 1^{n-k} \\
& =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!n^{k}} \\
& =\sum_{k=0}^{n=0} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& =\sum_{k=0}^{n}\left[\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n}\right] \frac{1}{k!} \\
& <\sum_{k=0}^{n}[1 \cdot 1 \cdots 1] \frac{1}{k!}=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} .
\end{aligned}
$$

Thus ends the proof.

[^0]: 1. Of course two parameters $m, n \in \mathbb{N}$ is also OK .
