MATH 117 FALL 2014 LECTURE 13 (Sept. 24, 2014)

Reading: Dr. Bowman’s book: §1.E, §1.F.

e Induction.

o To prove that infinitely many statements are true. These infinitely many statements
must be ordered through a parameter n € N.! That is these statements can be listed
as P(1), P(2), P(3), ... For example, the claim “22" 4 1 is prime for every n € N” is a
list of infinitely many statements:

P(1) : 22" 41 is prime;
P(2) : 2241 is prime;
P(3) : 2241 is prime;

o Two steps.
—  Show that P(1) is true;
—  Show that, if P(k) is true then P(k+1) is true.

o Why does it work?

That induction works on N is in fact a axiom on the set of natural numbers:

Axiom. The set N has the following property.
For any S CN, if

1. 1€5, and
2. Once k£ € S there must hold k+1€ S,

then S =0N.

Example 1. Prove that 13+ 23+ ... 4+ n3= <@)2

Proof. Denote the statements by P(n), that is let P(1): 13 = (1(1+1) )2, P(2):13+23 =
2(2+1) )2
( ) , and so on. We check

2
o P(1) is true. This is obvious as (@)2 =1

o If P(k) is true then sois P(k+1).

Since P(k) is true, we have

13+23+...+k3:<w>2. (1)

1. Of course two parameters m, n € N is also OK.



Adding (k +1)3 to both sides we have

2
P42+ + B+ (k+1)2 = —)> + (k+1)3

(
= (g 2(k+1)2+(k‘+1)3
|

<§>2+k+1](k+1)2
(k+1)*
(k+1)(k+2)>42

2

2
((k+1)((l;+1)+1)>. @)

we see that P(k-+ 1) must hold and the proof ends. O

Example 2. Prove that v/5,1/5v/5, ... are all strictly less than 5.

Proof. Denote a,:=1/51/5+/ - /5 (n square roots). Then we need to prove that all of the

P(n):a, <5 are true.
o P(1) is true. Clearly a; =+/5 <5.
o If P(k) is true then so is P(k+1). Assume aj <5. Then
ar+1=+v5ar <V5-5=5. (3)

Thus ends the proof. O

Exercise 1. Let x # 1. Prove

I*IEnJrl
l+z+a%+ 2= - (4)
for all n € N.
Exercise 2. Let n>5. Prove
2" > n?, (5)
Problem 1. Prove the following. Let n €N, x # k for any k € Z.
sin (2L 2) sin (22
sinz+sin2z+ - +sin(nzx)= ( 2 )z (5 ); (6)
sin(3)
. 1
sin((n+5)x
l—|—cosgrz—|—(:052:c—|—~-~—|—cosn:1c:((_7962)) (7)
2 25111(5)
%tan(%)+%tan(%)+--v+2—{1tan(2—i):2incot2in7cotx. (8)

Binomial Theorem.

o It is clear that

(a+b)"=coa’b"+crat b+ ..+ ¢, a0 (9)



(@]

cr = Number of ways to choose k a’s from the n a’s. For example, n=3, k=2,

(a+b) (a+b) (a+b) = a’b; (10)
(a+b) (a+b)(a+b) = a’b; (11)
(a+b)(a+b)(a+b)=a’b. (12)

Therefore at the end we have 3a?b in the expansion.

Through counting we have

o= (Z) = #’_k), (13)

If we check the ¢y term in the expansion, we see that it makes sense to define (g) =1.

Therefore we have the binomial expansion

(a+b)= (8) aObm 4 (Z) ak bR (Z) a0 = i (Z) aFprk (14)

Problem 2. Let o > 0 and f: R — R be a function. One could define the “finite difference
operator” as

(Anf)(@) = f(z) — f(z —h). (15)
Further define
N f =Dy (DS, N f = Ap(DRS), and so on. (16)
Prove
(BN =Y (17 (%) Fa—jh). (7)
Properties. "

_ ( Z ): < n > Note that this is consistent with the definition (") =1.
n—=k 0

(e =G+ G-

Proof. We have

)+ (") = & (nn!— I <k_1>!<2!_k+1>!
(n+1—k)n! k-n!

El(n—k+1)!  kKl'(n—Fk+1)!
[(n+1—Fk)+k]n!

Hn—k11)
B (n+1)! /n+1
= k!(n+1—k)!_< v ) (18)
The proof ends. O

Exercise 3. Prove the binomial expansion theorem through induction with the help of
the above identity.

We prove

R T SV Sy TR O (19)
2! n! n

for every n € IN.



Proof. Using binomial expansion we have
1 " o " n 1 k n—k
(”a) -2 (%) <E> !

i n!
- — k
= E'(n—Fk)'n

_ Zn(n—1)~-(n—k+1)
- k

k=0 "
_ i[ﬁ'n—lmn—kle}
N n on n

k=0

n

< Z[1-1-~1]%:1+1+l

2!
k=0

Thus ends the proof.
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