Math 117 Fall 2014 Lecture 11 (Sept. 19, 2014)

Reading: 314 Notes: Sets and Functions §3.3, §3.5. Dr. Bowman’s book: §3.A, 3.B.

- Recall function.
- A function $f: X \mapsto Y$ is a triplet (X, Y, f) where X, Y are sets and f is a rule assigning to every element $x \in X$ exactly one element in Y, this element is denoted $f(x)$.
- The key words here are "to every" and "exactly one". These are the two things we need to check when checking whether some f is a function or not.
- Composition.
- Let $f: X \mapsto Y, g: Y \mapsto Z$ be functions. Then we can form the composite function $g \circ f$: $X \mapsto Z$ with $(g \circ f)(x)$ defined as $g(f(x))$. Note that here $x \in X$ so $f(x)$ is well-defined, and $f(x) \in Y$ so $g(f(x))$ is well-defined (As g is a function with domain Y, it must assign a value for $f(x) \in Y)$.
- It is important to keep in mind that in general

$$
\begin{equation*}
g \circ f \neq f \circ g . \tag{1}
\end{equation*}
$$

In fact it may happen that only one of $g \circ f$ and $f \circ g$ could be defined at all.

- Inverse.
- Let $f: X \mapsto Y$ be a function. We say $g: Y \mapsto X$ is its inverse function if and only if both of the following hold:
- For every $x \in X,(g \circ f)(x)=x$;
- For every $y \in Y,(f \circ g)(y)=y$.

Note that $g \circ f: X \mapsto X$ and $f \circ g: Y \mapsto Y$.
Exercise 1. Prove that if g is the inverse of f, then f is the inverse of g.
Exercise 2. Prove that inverse is unique. That is if g_{1}, g_{2} are both inverses of f, then $g_{1}=g_{2}$ (for every $y \in Y, g_{1}(y)=g_{2}(y)$).

- For a generic function, there are two obstacles for the existence of an inverse function g.

1. There may be $x_{1} \neq x_{2}$ with $f\left(x_{1}\right)=f\left(x_{2}\right)$. In this case if we let $y=f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, it is not possible to define $g(y)$, as it has to equal x_{1} and also x_{2}.
2. There may be $y \in Y-f(X)$. Again $g(y)$ cannot be defined. Because whatever element of X we assign $g(y)$ to, we would have $g(y) \in X$ and $f(g(y)) \in f(X)$ which means there always holds $y \neq f(g(y))$.

- Inspired by this, we define: A function $f: X \mapsto Y$
- is called "one-to-one" (or "injective") if and only if whenever $x_{1} \neq x_{2}$, there holds $f\left(x_{1}\right) \neq f\left(x_{2}\right)$;

Exercise 3. Understand that this is equivalent to: Whenever $f\left(x_{1}\right)=f\left(x_{2}\right)$ there holds $x_{1}=x_{2}$.

- is called "onto" (or "surjective") if and only if $f(X)=Y$.

Exercise 4. Show that to prove $f(X)=Y$, it suffices to prove $Y \subseteq f(X)$, that is "for every $y \in Y$, there is $x \in X$ such that $y=f(x)$ ". (Hint: ${ }^{1}$)

- is called "bijective" if and only if it is one-to-one and onto.

Clearly when f is a bijection, we can define its inverse g.
-
Theorem 1. Let $f: X \mapsto Y$ and $g: Y \mapsto X$ be functions. Further assume g is the inverse of f. Then f is bijective.

Proof. We prove that f is one-to-one and onto.

- One-to-one.

Let $x_{1}, x_{2} \in X$ be such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since g is the inverse of f, we have

$$
\begin{equation*}
x_{1}=(g \circ f)\left(x_{1}\right)=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=(g \circ f)\left(x_{2}\right)=x_{2} . \tag{2}
\end{equation*}
$$

Therefore f is one-to-one.

- Onto.

Let $y \in Y$ be arbitrary. Set $x=g(y)$. Then we have

$$
\begin{equation*}
f(x)=f(g(y))=(f \circ g)(y)=y . \tag{3}
\end{equation*}
$$

Therefore f is onto.

- Important functions.
- Polynomials.

$$
\begin{equation*}
P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \tag{4}
\end{equation*}
$$

with $a_{n} \neq 0 . n$ is called the "degree" of the polynomial.

- Rational functions.

A function is called "rational" if it is the ratio between two polynomials.

- Absolute value.

$$
|x|:=\left\{\begin{array}{ll}
x & x \geqslant 0 \tag{5}\\
-x & x<0
\end{array} .\right.
$$

- Let $\max \{x, y\}$ denote the larger number between x, y, then

$$
\begin{equation*}
|x|=\max \{x,-x\} . \tag{6}
\end{equation*}
$$

Exercise 5. Let $x \in \mathbb{R}$. If $x<1$ and $-x<1$ both holds, then $|x|<1$.
Exercise 6. Let $x, y \in \mathbb{R}$. Prove that

$$
\begin{equation*}
\max \{x, y\}=\frac{x+y}{2}+\frac{|x-y|}{2} . \tag{7}
\end{equation*}
$$

Find a similar formula for $\min \{x, y\}$ and justify.

- Triangle inequality.

Let $x, y \in \mathbb{R}$. Then

$$
\begin{equation*}
|x+y| \leqslant|x|+|y| \tag{8}
\end{equation*}
$$

Exercise 7. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$ where $n \in \mathbb{N}$ is arbitrary. Prove

$$
\begin{equation*}
\left|x_{1}+\cdots+x_{n}\right| \leqslant\left|x_{1}\right|+\cdots+\left|x_{n}\right| . \tag{9}
\end{equation*}
$$

[^0]Exercise 8. You are adding up 10 irrational numbers between 0 and 1 using your calculator which is accurate to the 8th digit. What is your estimate of the round-off error for the sum?

[^0]: 1. $f(X) \subseteq Y$ is automatic.
