Math 117 Fall 2014 Lecture 10 (Sept. 18, 2014)

Reading: 314 Notes: Sets and Functions §3.1, §3.2.

- Function.
- A function $f: X \mapsto Y$ is a triplet (X, Y, f) where X, Y are sets and f is a rule assigning to each element $x \in X$ exactly one element in Y, this element is denoted $f(x)$.
- $\quad X$: domain; Y : co-domain.
- The only restriction is that f cannot assign to one x more than one $f(x) .{ }^{1}$
- Function and set relations.
- Image and pre-image. Let $f: X \mapsto Y$ be a function and $A \subseteq X, S \subseteq Y$. Then the image of A under f is defined as $\{f(a) \mid a \in A\}$ and denoted $f(A)$. The pre-image of S under f is defined as $\{x \in X \mid f(x) \in S\}$ and denoted $f^{-1}(S)$.

Notation. Note that we will not use f^{-1} to denote inverse function.
。
Proposition 1. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X, S, T \subseteq Y$. Further assume $A \subseteq B, S \subseteq T$. Then
a) $f(A) \subseteq f(B)$;
b) $f^{-1}(S) \subseteq f^{-1}(T)$.

Furthermore, $A \subset B$ does not imply $f(A) \subset f(B)$; and $S \subset T$ does not imply $f^{-1}(S) \subset$ $f^{-1}(T)$.

Proof. We prove a) and leave b) as exercise. Take an arbitrary $y \in f(A)$. By definition of $f(A)$ we have the existence of $a \in A$ such that $y=f(a)$. Now thanks to the fact that $A \subseteq B$ we have $a \in B$. By definition of $f(B)$ we know $f(a) \in f(B)$. But $y=f(a)$ so this gives $y \in f(B)$. Therefore $f(A) \subseteq f(B)$.

To see that $A \subset B$ does not imply $f(A) \subset f(B)$, consider the following example: Let $f(x)=\sin x, A=[-\pi, \pi], B=\mathbb{R}$. Then we have $A \subset B$ but $f(A)=f(B)$.

- Function and set operations.

Theorem 2. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X, S, T \subseteq Y$. Then
a) $f(A \cap B) \subseteq f(A) \cap f(B)$;
b) $f(A \cup B)=f(A) \cup f(B)$;
c) $f(A-B) \supseteq f(A)-f(B)$;
d) $f^{-1}(S \cap T)=f^{-1}(S) \cap f^{-1}(T)$;
e) $f^{-1}(S \cup T)=f^{-1}(S) \cup f^{-1}(T)$;
f) $f^{-1}(S-T)=f^{-1}(S)-f^{-1}(T)$.

- For proofs, see the note "Sets and Functions" for Math 314.

[^0]- Note that here the naïve expection is that equality should hold for all six situations. Therefore it is important to construct examples where $f(A \cap B) \subset f(A) \cap f(B)$ and $f(A-B) \supset f(A)-f(B)$.

Exercise 1. Find such examples. (Hint: ${ }^{2}$)

[^1]
[^0]: 1. If we further remove this restriction, we would have a "relation". Argue that relations from \mathbb{R} to \mathbb{R} can be identified with subsets of the plane \mathbb{R}^{2}.
[^1]: 2. Consider $\sin x$.
