MATH 117 FALL 2014 LECTURE 10 (SEPT. 18, 2014)

Reading: 314 Notes: Sets and Functions §3.1, §3.2.

- Function.
 - A function $f: X \mapsto Y$ is a triplet (X, Y, f) where X, Y are sets and f is a rule assigning to each element $x \in X$ exactly one element in Y, this element is denoted f(x).
 - $\circ \quad X: \text{ domain}; Y: \text{ co-domain}.$
 - The only restriction is that f cannot assign to one x more than one f(x).¹
- Function and set relations.
 - Image and pre-image. Let $f: X \mapsto Y$ be a function and $A \subseteq X, S \subseteq Y$. Then the image of A under f is defined as $\{f(a) | a \in A\}$ and denoted f(A). The pre-image of S under f is defined as $\{x \in X | f(x) \in S\}$ and denoted $f^{-1}(S)$.

NOTATION. Note that we will not use f^{-1} to denote inverse function.

0

PROPOSITION 1. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X, S, T \subseteq Y$. Further assume $A \subseteq B, S \subseteq T$. Then

- a) $f(A) \subseteq f(B)$;
- b) $f^{-1}(S) \subseteq f^{-1}(T)$.

Furthermore, $A \subset B$ does not imply $f(A) \subset f(B)$; and $S \subset T$ does not imply $f^{-1}(S) \subset f^{-1}(T)$.

Proof. We prove a) and leave b) as exercise. Take an arbitrary $y \in f(A)$. By definition of f(A) we have the existence of $a \in A$ such that y = f(a). Now thanks to the fact that $A \subseteq B$ we have $a \in B$. By definition of f(B) we know $f(a) \in f(B)$. But y = f(a) so this gives $y \in f(B)$. Therefore $f(A) \subseteq f(B)$.

To see that $A \subset B$ does not imply $f(A) \subset f(B)$, consider the following example: Let $f(x) = \sin x$, $A = [-\pi, \pi]$, $B = \mathbb{R}$. Then we have $A \subset B$ but f(A) = f(B). \Box

• Function and set operations.

THEOREM 2. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X, S, T \subseteq Y$. Then

- a) $f(A \cap B) \subseteq f(A) \cap f(B);$
- $b) \quad f(A \cup B) = f(A) \cup f(B);$
- c) $f(A-B) \supseteq f(A) f(B);$
- d) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T);$
- $e) \ f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T);$
- f) $f^{-1}(S-T) = f^{-1}(S) f^{-1}(T)$.
- For proofs, see the note "Sets and Functions" for Math 314.

^{1.} If we further remove this restriction, we would have a "relation". Argue that relations from \mathbb{R} to \mathbb{R} can be identified with subsets of the plane \mathbb{R}^2 .

• Note that here the naïve expection is that equality should hold for all six situations. Therefore it is important to construct examples where $f(A \cap B) \subset f(A) \cap f(B)$ and $f(A-B) \supset f(A) - f(B)$.

Exercise 1. Find such examples. (Hint:²)

2. Consider $\sin x$.