MATH 117 FALL 2014 LECTURE 9 (Sept. 17, 2014)

Reading: 314 Notes: Sets and Functions §2.1 (Open and Closed Sets: Optional); Bowman §1.G.

e Operations on two sets (cont.)
Example 1. Prove that (A—B)N(B—A)=2.

Proof. Take an arbitrary z € (A — B). By definition z € A, x ¢ B. By definition of B — A
we have x ¢ B implies x ¢ B — A. Therefore there is no z in both A — B and B — A. By
definition this gives (A— B)N (B —A)=0. O

Example 2. Let AC B. Prove ANC C BNC for any set C.

Proof. Take an arbitrary z € A N C. By defintion x € A and x € C. Now as A C B, by
definition of C we conclude x € B from x € A. Therefore z € B and x € C which givesx € BNC.
Thus we have proved ANC CBNC. O

Example 3. Prove AU(BNC)=(AUB)N(AUC).
Proof. It suffices to prove both AU(BNC)C(AUB)N(AUC) and (AUB)N(AUC)C
AU(BNC).

o AU(BNC)C(AUB)N(AUC).
Take an arbitrary z € AU(BNC). There are two cases.

1. x € A. By definition of U there hold x € AU B and x € AUC. Now by definition
of N we have z€ (AUB)N(AUC).

2. ¢ A. Then by definition of U we must have z € BN C'. This means = € B and
xeC.
Since x € B, by definition of U there holds x € AU B. Similarly x € C' implies
reAUC.
Finally by definition of N we have x € (AUB)N(AUC).

Thus we have proved if x € AU (BNC) then z € (AU B) N (AU C), which means
AU(BNC)C(AUB)N(AUCQC).

o (AUB)N(AUC)CAU(BNQO).
Left as exercise. OJ
Please work on the examples and exercises in the assigned readings.
e Intervals.
o Closed interval:
[a,b] :={x]a<x<b}; (1)
o Open interval:
(a,b):={z|a<x<b}; (2)
o Half open/half closed interval:
[a,b) :={z|a<x<b}; (a,b]:={z]a<x <b}. (3)
o Intervals involving infinity:

(a, +00):={z|la<z}; (—00,a):={z|x<a}. (4)



[a, +00) and (—o0, a] can also be defined.
Operations on more than two sets.
DEFINITION 4. Let W be a collection of sets. Then the union of all sets in this collection is
defined as the set of those elements belonging to at least one set in W, and the intersection

of all sets in this collection is defined as the set of those elements belonging to all the sets in
W. That is

UaewA :={x| There is A€ W such that v € A}, (5)
NacwA:={z|x € A for every Ac W}. (6)

NOTATION. Some times the sets in W can be “indexed”, in this case we write the
union /intersection slightly differently. For example, the intersection of all sets of the form
(1 —x,1) where x is some positive real number, can be written as

ﬁ:z:>0(1_ma1)' (7)

Example 5. Calculate
1 1
A:—ﬂneN[l——,l} Bl_ﬂn€N<1——,1>. (8)
n n

Justify your result.
Solution. First we guess the answers:

A={1}, B=w. (9)
Now we justify them.
o A={1}.

—  First show {1} C A.
Since {1} has only one element, all we need to show is 1 € A. By definition

of A if suffices to show 1 € [1 —%, 1} for every n € N.
Let n € N be arbitrary. Then we have

1--<1<1 (10)
n

which means 1 € [1 —%, 1]

— Now we show A C{1}.
Take an arbitrary x € A. There are three cases.
e z=1. Then z € {1}.
e 1z > 1. In this case we have = ¢ [0, 1] = [1 - %, 1] Therefore x ¢ A.
Contradiction. Thus this case is not possible.

e x < 1. In this case we have 1 — z > 0 and there is ng € IN such that
ng > 1T1x This leads to x <1 — nio which in turn gives

x¢[1—ni0,1] (11)

and consequently x ¢ A. Thus this case is not possible either.



Summarizing, we see that every = € A also belongs to {1}, that is A C {1}.

- B=g.
The proof is almost identical to the A C {1} part of the proof for A= {1}
and we leave it as an exercise.

Exercise 1. Calculate

C::UneN[l—%J} D::UneN(l—%J). (12)
Justify your results.
Exercise 2. Calculate
E::ﬁneN(l—%,l—&—i). (13)
Justify your result.
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