MATH 117 FALL 2014 LECTURE 8 (SepT. 15, 2014)

Reading: 314 Notes: Sets and Functions §1; Bowman §1.A.
e Sets.

DEFINITION 1. A set is a collection of objects. Each object is called a “member” (or “element”)
of this set.

NOTATION. We use a € A to mean a is a member of A and use a ¢ A to mean a is not a
member of A.

o Empty set. There is exactly one set with no members at all.! We denote it by &.
o Russell’s paradox. Consider the set
S:={A|A¢ A}. (1)
Now consider the question: Does S € S7

Exercise 1. Define a set A such that A€ A. (Answer:?)
Problem 1. Critique the following proof of the claim: There are only finitely many natural
numbers.

Proof. Consider the set

A :={natural numbers that can be defined using less than 10 % English letters}  (2)

A is not empty as “the first natural number”, which defines 1, is its member.
Note that since there are only 26 English letters, there are only 26(1°°) possible
combinations of 10° English letters and therefore there are only finitely many
numbers in A. We now prove A=N. More specifically, we prove the set

B :={natural numbers that are not in A} (3)

is empty. We do this through proof by contradiction.

Assume B is not empty. Then among the numbers in B there is a smallest one.
But this number can be defined as “the smallest number that cannot be defined
using less than one million English letters”. Clearly this means this smallest number
in B should also be a member of A. This contradicts the definition of B. Therefore
B is empty and A=N and consequently N has no more than 261°°) numbers. O

e Relations between sets

o Subset. A set A is a subset of another set B, denoted A C B, if and only if every
member of A is also a member of B.

— Template for proving A C B:

Take an arbitrary a € A, [your argument here|, we see that
a € B. Thus by definition A C B.

Example 2. Let A={n(n+1) (n+2)|ne€N} and B={n€N|3 divides n}.
Prove that A C B.

1. Whether this needs proof depends on whether you take it as an axiom.

2. For example A:={Allthesetsthatcanbedefined withlessthan 100 English words}. Then A =“The set of all sets that can
be defined with less than one hundred English words” which is 16 words, therefore A € A.



Proof. Take an arbitrary a € A. By definition of A, there is n € N such that
a=n(n+1)(n+2). Now there are three cases for the remainder of n + 3:

1. The remainder is 0. Then 3|n and therefore 3| [n (n+1) (n+2)] so 3|a.
2. The remainder is 1. Then 3| (n+ 2) and we still have 3| a.
3. The remainder is 2. Then 3| (n+ 1) and we still have 3| a.
Thus in all situations we always have 3| @ which means a € B by definition of
B. Therefore A C B. O
— Do not confuse € and C. For example, if A={1,2,3}, then 1€ A but {1} ¢ A,
although it is true that {1} C A.
— In particular, @ C A for every set A.
—  We also have A C A for every set A.

Proof. Take an arbitrary a € A. Then a € A and therefore A C A. O

— One important property is transitivity:

Assume ACB,BCC, then ACC. (4)

Proof. Take an arbitrary a € A.
Since A C B, by definition we have a € B. This together with the definition
of BCC givesae(C.
Therefore A C C by definition. O
Equal. A= B if and only if the two sets have the same elements.
— To prove: Prove
1. ACB;
2. BCA.
Proper subset. AC B (or A C B) if and only if
1. ACB;
2. A+B.
Proving A C B involves two steps.
1. Prove AC B;
2. Prove there is at least one element b € B such that b ¢ A.
Example 3. Let A={n(n+1)(n+2)|n €N} and B={n € N|3 divides n}. Prove
that A C B.
Proof. We do this through the two steps.
1. AC B. This has already been done above.

2. There is at least one element b € B such that b¢ A. Take b=3. Since 3|3 we
see that 3 € B. On the other hand, for every n € N we have

n(n+1)(n+2)>1x2x3=6. (5)



Therefore every element of A is greater than or equal to 6. As 3 < 6 we see
that 3¢ A.

Thus the proof ends. O

e Operations on two sets.
Let A, B be sets. Then we can create new sets through the following operations.

o Union.
The union AU B is defined as {z|z € A or x € B}. Note that here if = is a member
of both A and B then it is also a member of AU B.
For example

{1,2,3}U{3,4,5} ={1,2,3,4,5}. (6)

o Intersection.
The intersection AN B is defined as {z|z € A and € B}. For example

{1,2,3}n{3,4,5} ={3}. (7)

o Difference.
The difference A — B (also can be denoted as A\B) is defined as {z|z € A but
x ¢ B}. For example
(1,23} —{3,4,5) ={1,2};  {3,4,5}—{1,2,3} = {4,5}. 8)
Exercise 2. Let A, B,C, D be sets with ACB,CCD. Prove A—DCB-C.

Exercise 3. Prove that

A-B=A—ANB (9)
for any two sets A, B.
Example 4. Represent the set
AAB:={z|x €A or z € B but not both}. (10)
We see that
AAB={z|x€eAorxeB}—{x|recboth A,B}=AUB—-ANB. (11)
We can also write
AAB={z|x€ Abut not B}U{z|x€ B but not A} =(A—-B)U(B—A). (12)
Exercise 4. Prove directly
AUB—ANB=(A—B)U(B - A). (13)

(Hint:? )

3. We first prove that AUB—ANBC(A—B)U(B—A). Take any t € AUB — AN B. Then we have z € AU B. Now there
are two cases:

1. € A. Then we have xt€ A—ANB=A—-BC(A—B)U(B— A). Note the equality is (9).
2. z € B. Then we have z € B— AN B and still conclude z € (A — B)U (B — A).
Therefore we have AUB—ANBC(A—-B)U(B—A).
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