MATH 117 FALL 2014 LECTURE 8 (Sept. 15, 2014)

Reading: 314 Notes: Sets and Functions §1; Bowman §1.A.

• Sets.

DEFINITION 1. A set is a collection of objects. Each object is called a "member" (or "element") of this set.

NOTATION. We use $a \in A$ to mean a is a member of A and use $a \notin A$ to mean a is not a member of A.

- Empty set. There is exactly one set with no members at all.¹ We denote it by \emptyset .
- Russell's paradox. Consider the set

$$S := \{A \mid A \notin A\}. \tag{1}$$

Now consider the question: Does $S \in S$?

Exercise 1. Define a set A such that $A \in A$. (Answer:²)

Problem 1. Critique the following proof of the claim: There are only finitely many natural numbers.

Proof. Consider the set

 $A := \{\text{natural numbers that can be defined using less than 10⁶ English letters}\}$ (2)

A is not empty as "the first natural number", which defines 1, is its member. Note that since there are only 26 English letters, there are only $26^{(10^6)}$ possible combinations of 10^6 English letters and therefore there are only finitely many numbers in A. We now prove $A = \mathbb{N}$. More specifically, we prove the set

$$B := \{ \text{natural numbers that are not in } A \}$$
(3)

is empty. We do this through proof by contradiction.

Assume *B* is not empty. Then among the numbers in *B* there is a smallest one. But this number can be defined as "the smallest number that cannot be defined using less than one million English letters". Clearly this means this smallest number in *B* should also be a member of *A*. This contradicts the definition of *B*. Therefore *B* is empty and $A = \mathbb{N}$ and consequently \mathbb{N} has no more than $26^{(10^\circ)}$ numbers. \Box

- Relations between sets
 - Subset. A set A is a subset of another set B, denoted $A \subseteq B$, if and only if every member of A is also a member of B.
 - Template for proving $A \subseteq B$:

Take an arbitrary $a \in A$, [your argument here], we see that $a \in B$. Thus by definition $A \subseteq B$.

Example 2. Let $A = \{n (n+1) (n+2) | n \in \mathbb{N}\}$ and $B = \{n \in \mathbb{N} | 3 \text{ divides } n\}$. Prove that $A \subseteq B$.

^{1.} Whether this needs proof depends on whether you take it as an axiom.

^{2.} For example $A := \{A \text{ll the sets that can be defined with less than 100 English words}\}$. Then $A = \text{``The set of all sets that can be defined with less than one hundred English words'' which is 16 words, therefore <math>A \in A$.

Proof. Take an arbitrary $a \in A$. By definition of A, there is $n \in \mathbb{N}$ such that a = n (n+1) (n+2). Now there are three cases for the remainder of $n \div 3$:

- 1. The remainder is 0. Then 3|n and therefore 3|[n(n+1)(n+2)] = 3|a|.
- 2. The remainder is 1. Then 3|(n+2) and we still have 3|a.
- 3. The remainder is 2. Then 3|(n+1) and we still have 3|a.

Thus in all situations we always have 3|a which means $a \in B$ by definition of B. Therefore $A \subseteq B$.

- Do not confuse \in and \subseteq . For example, if $A = \{1, 2, 3\}$, then $1 \in A$ but $\{1\} \notin A$, although it is true that $\{1\} \subseteq A$.
- In particular, $\emptyset \subseteq A$ for every set A.
- We also have $A \subseteq A$ for every set A.

Proof. Take an arbitrary $a \in A$. Then $a \in A$ and therefore $A \subseteq A$.

– One important property is transitivity:

Assume
$$A \subseteq B, B \subseteq C$$
, then $A \subseteq C$. (4)

Proof. Take an arbitrary $a \in A$.

Since $A \subseteq B$, by definition we have $a \in B$. This together with the definition of $B \subseteq C$ gives $a \in C$. Therefore $A \subseteq C$ by definition.

- Equal. A = B if and only if the two sets have the same elements.
 - To prove: Prove
 - 1. $A \subseteq B$; 2. $B \subseteq A$.
- Proper subset. $A \subset B$ (or $A \subsetneq B$) if and only if
 - 1. $A \subseteq B;$
 - 2. $A \neq B$.

Proving $A \subset B$ involves two steps.

- 1. Prove $A \subseteq B$;
- 2. Prove there is at least one element $b \in B$ such that $b \notin A$.

Example 3. Let $A = \{n (n+1) (n+2) | n \in \mathbb{N}\}$ and $B = \{n \in \mathbb{N} | 3 \text{ divides } n\}$. Prove that $A \subset B$.

Proof. We do this through the two steps.

- 1. $A \subseteq B$. This has already been done above.
- 2. There is at least one element $b \in B$ such that $b \notin A$. Take b = 3. Since $3 \mid 3$ we see that $3 \in B$. On the other hand, for every $n \in \mathbb{N}$ we have

$$n(n+1)(n+2) \ge 1 \times 2 \times 3 = 6.$$

$$\tag{5}$$

Therefore every element of A is greater than or equal to 6. As 3 < 6 we see that $3 \notin A$.

Thus the proof ends.

• Operations on two sets.

Let A, B be sets. Then we can create new sets through the following operations.

• Union.

The union $A \cup B$ is defined as $\{x | x \in A \text{ or } x \in B\}$. Note that here if x is a member of both A and B then it is also a member of $A \cup B$.

For example

$$\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}.$$
(6)

• Intersection.

The intersection $A \cap B$ is defined as $\{x \mid x \in A \text{ and } x \in B\}$. For example

$$\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}.$$
(7)

• Difference.

The difference A - B (also can be denoted as $A \setminus B$) is defined as $\{x \mid x \in A \text{ but } x \notin B\}$. For example

$$\{1,2,3\} - \{3,4,5\} = \{1,2\}; \qquad \{3,4,5\} - \{1,2,3\} = \{4,5\}.$$
(8)

Exercise 2. Let A, B, C, D be sets with $A \subseteq B, C \subseteq D$. Prove $A - D \subseteq B - C$. **Exercise 3.** Prove that

$$A - B = A - A \cap B \tag{9}$$

for any two sets A, B.

Example 4. Represent the set

$$A \triangle B := \{ x \mid x \in A \text{ or } x \in B \text{ but not both} \}.$$

$$(10)$$

We see that

$$A \triangle B = \{x \mid x \in A \text{ or } x \in B\} - \{x \mid x \in \text{both } A, B\} = A \cup B - A \cap B.$$

$$(11)$$

We can also write

$$A \triangle B = \{x \mid x \in A \text{ but not } B\} \cup \{x \mid x \in B \text{ but not } A\} = (A - B) \cup (B - A).$$
(12)

Exercise 4. Prove directly

$$A \cup B - A \cap B = (A - B) \cup (B - A). \tag{13}$$

(Hint: 3)

3. We first prove that $A \cup B - A \cap B \subseteq (A - B) \cup (B - A)$. Take any $x \in A \cup B - A \cap B$. Then we have $x \in A \cup B$. Now there are two cases:

1. $x \in A$. Then we have $x \in A - A \cap B = A - B \subseteq (A - B) \cup (B - A)$. Note the equality is (9).

2. $x \in B$. Then we have $x \in B - A \cap B$ and still conclude $x \in (A - B) \cup (B - A)$.

Therefore we have $A \cup B - A \cap B \subseteq (A - B) \cup (B - A)$.