Math 117 Fall 2014 Lecture 8 (Sept. 15, 2014)

Reading: 314 Notes: Sets and Functions §1; Bowman §1.A.

- Sets.

Definition 1. A set is a collection of objects. Each object is called a "member"(or "element") of this set.

Notation. We use $a \in A$ to mean a is a member of A and use $a \notin A$ to mean a is not a member of A.

- Empty set. There is exactly one set with no members at all. ${ }^{1}$ We denote it by \varnothing.
- Russell's paradox. Consider the set

$$
\begin{equation*}
S:=\{A \mid A \notin A\} . \tag{1}
\end{equation*}
$$

Now consider the question: Does $S \in S$?
Exercise 1. Define a set A such that $A \in A$. (Answer: ${ }^{2}$)
Problem 1. Critique the following proof of the claim: There are only finitely many natural numbers.

Proof. Consider the set

$$
\begin{equation*}
A:=\left\{\text { natural numbers that can be defined using less than } 10^{6} \text { English letters }\right\} \tag{2}
\end{equation*}
$$

A is not empty as "the first natural number", which defines 1 , is its member. Note that since there are only 26 English letters, there are only $26^{\left(10^{6}\right)}$ possible combinations of 10^{6} English letters and therefore there are only finitely many numbers in A. We now prove $A=\mathbb{N}$. More specifically, we prove the set

$$
\begin{equation*}
B:=\{\text { natural numbers that are not in } A\} \tag{3}
\end{equation*}
$$

is empty. We do this through proof by contradiction.
Assume B is not empty. Then among the numbers in B there is a smallest one. But this number can be defined as "the smallest number that cannot be defined using less than one million English letters". Clearly this means this smallest number in B should also be a member of A. This contradicts the definition of B. Therefore B is empty and $A=\mathbb{N}$ and consequently \mathbb{N} has no more than $26^{\left(10^{6}\right)}$ numbers.

- Relations between sets
- Subset. A set A is a subset of another set B, denoted $A \subseteq B$, if and only if every member of A is also a member of B.
- Template for proving $A \subseteq B$:

Take an arbitrary $a \in A$, [your argument here], we see that $a \in B$. Thus by definition $A \subseteq B$.

Example 2. Let $A=\{n(n+1)(n+2) \mid n \in \mathbb{N}\}$ and $B=\{n \in \mathbb{N} \mid 3$ divides $n\}$. Prove that $A \subseteq B$.

[^0]Proof. Take an arbitrary $a \in A$. By definition of A, there is $n \in \mathbb{N}$ such that $a=n(n+1)(n+2)$. Now there are three cases for the remainder of $n \div 3$:

1. The remainder is 0 . Then $3 \mid n$ and therefore $3 \mid[n(n+1)(n+2)]$ so $3 \mid a$.
2. The remainder is 1 . Then $3 \mid(n+2)$ and we still have $3 \mid a$.
3. The remainder is 2 . Then $3 \mid(n+1)$ and we still have $3 \mid a$.

Thus in all situations we always have $3 \mid a$ which means $a \in B$ by definition of B. Therefore $A \subseteq B$.

- Do not confuse \in and \subseteq. For example, if $A=\{1,2,3\}$, then $1 \in A$ but $\{1\} \notin A$, although it is true that $\{1\} \subseteq A$.
- In particular, $\varnothing \subseteq A$ for every set A.
- We also have $A \subseteq A$ for every set A.

Proof. Take an arbitrary $a \in A$. Then $a \in A$ and therefore $A \subseteq A$.

- One important property is transitivity:

$$
\begin{equation*}
\text { Assume } A \subseteq B, B \subseteq C \text {, then } A \subseteq C \text {. } \tag{4}
\end{equation*}
$$

Proof. Take an arbitrary $a \in A$.
Since $A \subseteq B$, by definition we have $a \in B$. This together with the definition of $B \subseteq C$ gives $a \in C$.

Therefore $A \subseteq C$ by definition.

- Equal. $A=B$ if and only if the two sets have the same elements.
- To prove: Prove

1. $A \subseteq B$;
2. $B \subseteq A$.

- Proper subset. $A \subset B$ (or $A \subsetneq B$) if and only if

1. $A \subseteq B$;
2. $A \neq B$.

Proving $A \subset B$ involves two steps.

1. Prove $A \subseteq B$;
2. Prove there is at least one element $b \in B$ such that $b \notin A$.

Example 3. Let $A=\{n(n+1)(n+2) \mid n \in \mathbb{N}\}$ and $B=\{n \in \mathbb{N} \mid 3$ divides $n\}$. Prove that $A \subset B$.

Proof. We do this through the two steps.

1. $A \subseteq B$. This has already been done above.
2. There is at least one element $b \in B$ such that $b \notin A$. Take $b=3$. Since $3 \mid 3$ we see that $3 \in B$. On the other hand, for every $n \in \mathbb{N}$ we have

$$
\begin{equation*}
n(n+1)(n+2) \geqslant 1 \times 2 \times 3=6 . \tag{5}
\end{equation*}
$$

Therefore every element of A is greater than or equal to 6 . As $3<6$ we see that $3 \notin A$.

Thus the proof ends.

- Operations on two sets.

Let A, B be sets. Then we can create new sets through the following operations.

- Union.

The union $A \cup B$ is defined as $\{x \mid x \in A$ or $x \in B\}$. Note that here if x is a member of both A and B then it is also a member of $A \cup B$.

For example

$$
\begin{equation*}
\{1,2,3\} \cup\{3,4,5\}=\{1,2,3,4,5\} \tag{6}
\end{equation*}
$$

- Intersection.

The intersection $A \cap B$ is defined as $\{x \mid x \in A$ and $x \in B\}$. For example

$$
\begin{equation*}
\{1,2,3\} \cap\{3,4,5\}=\{3\} \tag{7}
\end{equation*}
$$

- Difference.

The difference $A-B$ (also can be denoted as $A \backslash B$) is defined as $\{x \mid x \in A$ but $x \notin B\}$. For example

$$
\begin{equation*}
\{1,2,3\}-\{3,4,5\}=\{1,2\} ; \quad\{3,4,5\}-\{1,2,3\}=\{4,5\} \tag{8}
\end{equation*}
$$

Exercise 2. Let A, B, C, D be sets with $A \subseteq B, C \subseteq D$. Prove $A-D \subseteq B-C$.
Exercise 3. Prove that

$$
\begin{equation*}
A-B=A-A \cap B \tag{9}
\end{equation*}
$$

for any two sets A, B.
Example 4. Represent the set

$$
\begin{equation*}
A \triangle B:=\{x \mid x \in A \text { or } x \in B \text { but not both }\} . \tag{10}
\end{equation*}
$$

We see that

$$
\begin{equation*}
A \triangle B=\{x \mid x \in A \text { or } x \in B\}-\{x \mid x \in \text { both } A, B\}=A \cup B-A \cap B \tag{11}
\end{equation*}
$$

We can also write

$$
\begin{equation*}
A \triangle B=\{x \mid x \in A \text { but not } B\} \cup\{x \mid x \in B \text { but not } A\}=(A-B) \cup(B-A) \tag{12}
\end{equation*}
$$

Exercise 4. Prove directly

$$
\begin{equation*}
A \cup B-A \cap B=(A-B) \cup(B-A) \tag{13}
\end{equation*}
$$

(Hint: ${ }^{3}$)

[^1]
[^0]: 1. Whether this needs proof depends on whether you take it as an axiom.
 2. For example $A:=\{$ All the sets that can be defined with less than 100 English words $\}$. Then $A=$ "The set of all sets that can be defined with less than one hundred English words" which is 16 words, therefore $A \in A$.
[^1]: 3. We first prove that $A \cup B-A \cap B \subseteq(A-B) \cup(B-A)$. Take any $x \in A \cup B-A \cap B$. Then we have $x \in A \cup B$. Now there are two cases:
 4. $x \in A$. Then we have $x \in A-A \cap B=A-B \subseteq(A-B) \cup(B-A)$. Note the equality is (9).
 5. $x \in B$. Then we have $x \in B-A \cap B$ and still conclude $x \in(A-B) \cup(B-A)$.

 Therefore we have $A \cup B-A \cap B \subseteq(A-B) \cup(B-A)$.

