Math 117 Fall 2014 Homework 2

Due Thursday Sept. 18 3pm in Assignment Box

Question 1. (5 PTS)
a) (2 PTs) Find two irrational numbers a, b such that both $a+b$ and $a \times b$ are rational.
b) (3 PTS) Can you find two irrational numbers a, b such that both $a+b$ and $a-b$ are rational? If you answer yes, find two such numbers; If you answer no, prove that this is not possible.

Solution.

a) Take $a=1-\sqrt{2}, b=1+\sqrt{2}$ both irrational. Then we have $a+b=2, a \times b=-1$ both rational.
b) It is not possible. We prove by contradiction. Assume there are a, b irrational such that both $a+b$ and $a-b$ are rational. Then we can denote

$$
\begin{equation*}
a+b=\frac{p}{q}, \quad a-b=\frac{r}{s} \tag{1}
\end{equation*}
$$

with $p, q, r, s \in \mathbb{Z}, q, s>0$. Now we calculate

$$
\begin{equation*}
a=\frac{1}{2}[(a+b)+(a-b)]=\frac{p s+r q}{2 q s} . \tag{2}
\end{equation*}
$$

It is clear that $p s+r q, 2 q s \in \mathbb{Z}$ and furthermore $2 q s>0$. Dividing both numerator and denominator by their greatest common divisor we see that they can be made co-prime. Therefore $a \in \mathbb{Q}$, contradiction.

Note. It is OK to simply say if $a+b, a-b \in \mathbb{Q}$ then $a=\frac{1}{2}[(a+b)+(a-b)] \in \mathbb{Q}$.
Question 2. (5 PTs) Prove that $\sqrt{5}+\sqrt{11}$ is irrational.
Proof. Assume the contrary, that is assume $\sqrt{5}+\sqrt{11} \in \mathbb{Q}$. Then so is

$$
\begin{equation*}
\sqrt{55}=\frac{1}{2}\left[(\sqrt{5}+\sqrt{11})^{2}-16\right] . \tag{3}
\end{equation*}
$$

Let $p, q \in \mathbb{Z}, q>0,(p, q)=1$ be such that $\sqrt{55}=\frac{p}{q}$. Then we have

$$
\begin{equation*}
p^{2}=55 q^{2} \tag{4}
\end{equation*}
$$

which implies $5 \mid p^{2}$. By the corrollary of the Fundamental Theorem of Arithmetic, we have $p=5 k$ for some integer k. Substituting back into (4) we have

$$
\begin{equation*}
5 p^{2}=11 q^{2} . \tag{5}
\end{equation*}
$$

This implies $5 \mid 11 q^{2}$. As $5 \nmid 11$, we must have $5 \mid q^{2}$ which gives $5 \mid q$. Thus 5 is a common divisor of both p, q, contradicting $(p, q)=1$.

Remark. Another (very clever) proof by Peter: Assume $\sqrt{5}+\sqrt{11}$ is rational. Then so is

$$
\begin{equation*}
\sqrt{5}-\sqrt{11}=\frac{-6}{\sqrt{5}+\sqrt{11}} \tag{6}
\end{equation*}
$$

But this contradicts Q1 b) as both $\sqrt{5}$ and $\sqrt{11}$ are irrational.
Question 3. (5 PTS) Calculate (using a computing device if necessary)

$$
\begin{equation*}
E_{n}:=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} \tag{7}
\end{equation*}
$$

for $n=3,5,7$. For each $n=3,5,7$, find the smallest $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \geqslant E_{n} \tag{8}
\end{equation*}
$$

Solution. We have

$$
\begin{gather*}
E_{3}=1+1+\frac{1}{2}+\frac{1}{6}=\frac{8}{3}=2.666 \cdots \tag{9}\\
E_{5}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}=\frac{163}{60}=2.71666 \cdots \tag{10}\\
E_{7}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}=\frac{685}{252}=2.71825 \underline{396825} \tag{11}
\end{gather*}
$$

Note that 396825 is repeating.
To find the corresponding m we first try $m=2^{k}$ until the value exceeds E_{n} and then refine the search by binary search algorithm ${ }^{1}$. Note that as $\left(1+\frac{1}{m}\right)^{m}$ is increasing, all we need to find is m such that

$$
\begin{equation*}
\left(1+\frac{1}{m-1}\right)^{m-1}<E_{n} \leqslant\left(1+\frac{1}{m}\right)^{m} . \tag{12}
\end{equation*}
$$

We do this through the help of http://keisan.casio.com/calculator.

- $n=3 . m=26$.
- $n=5 . m=841$.
- $n=7 . m=48784$.

Question 4. (5 PTS)
a) (3 PTS) Prove that $\left(1+\frac{1}{n}\right)^{n+1}$ is decreasing. (Hint: ${ }^{2}$)
b) (2 PTS) Use the result in a) to prove that $\left(1+\frac{1}{n}\right)^{n}$ has a upper bound. Note that even if you cannot prove a), you still can apply the result in a) to b).

Proof.
a) We prove

$$
\begin{equation*}
\left[\left(1+\frac{1}{n}\right)^{n+1}\right]^{-1}=\left(\frac{n}{n+1}\right)^{n+1}=\left(1-\frac{1}{n+1}\right)^{n+1} \tag{13}
\end{equation*}
$$

[^0]is increasing. Calculate
\[

$$
\begin{align*}
\frac{\left(1-\frac{1}{n+1}\right)^{n+1}}{\left(1-\frac{1}{n}\right)^{n}} & =\left(1-\frac{1}{n+1}\right)\left[\frac{1-\frac{1}{n+1}}{1-\frac{1}{n}}\right]^{n} \tag{14}\\
& =\left(1-\frac{1}{n+1}\right)\left(\frac{n^{2}}{n^{2}-1}\right)^{n} \tag{15}\\
& =\left(1-\frac{1}{n+1}\right)\left(1+\frac{1}{n^{2}-1}\right)^{n} \tag{16}\\
& \geqslant\left(1-\frac{1}{n+1}\right)\left(1+\frac{n}{n^{2}-1}\right) \tag{17}\\
& =1-\frac{1}{n+1}+\frac{n}{n^{2}-1}-\frac{n}{n+1} \frac{1}{n^{2}-1} \tag{18}\\
& =1+\frac{1}{n^{2}-1}-\frac{n}{n+1} \frac{1}{n^{2}-1} \tag{19}\\
& =1+\frac{1}{(n+1)\left(n^{2}-1\right)}>1 . \tag{20}
\end{align*}
$$
\]

Note that (17) follows from (16) thanks to Bernoulli's inequality.
b) Thanks to a) we have

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n}\right)^{n+1}<\left(1+\frac{1}{1}\right)^{1+1}=4 \tag{21}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Therefore 4 is a upper bound.

[^0]: 1. See http://en.wikipedia.org/wiki/Binary _search_algorithm. On a computer, it will be faster to use Golden Section or (roughly equivalently) Fibonacci search http://en.-wikipedia.org/wiki/Golden_section_search which will converge to the desired m in less steps. But binary search is obviously advantageous if no programming is intended.
 2. Prove that $\left[\left(1+\frac{1}{n}\right)^{n+1}\right]^{-1}$ is increasing.
