Math 117 Fall 2014 Homework 2

Due Thursday Sept. 18 3pm in Assignment Box

Question 1. (5 PTs)

a) (2 PTS) Find two irrational numbers a, b such that both $a+b$ and $a \times b$ are rational.
b) (3 PTS) Can you find two irrational numbers a, b such that both $a+b$ and $a-b$ are rational? If you answer yes, find two such numbers; If you answer no, prove that this is not possible.

Question 2. (5 Pts) Prove that $\sqrt{5}+\sqrt{11}$ is irrational.
Question 3. (5 PTS) Calculate (using a computing device if necessary)

$$
\begin{equation*}
E_{n}:=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} \tag{1}
\end{equation*}
$$

for $n=3,5,7$. For each $n=3,5,7$, find the smallest $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \geqslant E_{n} \tag{2}
\end{equation*}
$$

Question 4. (5 PTS)
a) (3 PTS) Prove that $\left(1+\frac{1}{n}\right)^{n+1}$ is decreasing. (Hint: ${ }^{1}$)
b) (2 PTs) Use the result in a) to prove that $\left(1+\frac{1}{n}\right)^{n}$ has a upper bound. Note that even if you cannot prove a), you still can apply the result in a) to b).

[^0]
[^0]: 1. Prove that $\left[\left(1+\frac{1}{n}\right)^{n+1}\right]^{-1}$ is increasing.
