MATH 117 FALL 2014 LECTURE 6 (Sept. 11, 2014)

- What is π ?
 - The ratio between the circumference and diameter of a circle; or the ratio between the area and the square of the radius of a circle. But why are they the same number?
 - $\circ~$ The usual high school "proof" relies on two assumptions: As the number of sides increases,
 - The area of the polygon approaches that of the circle;
 - The circumference of the polygon approaches that of the circle.

Both are subtle questions to answer. Will be proved in 217 or 317.

- Calculation of π through iteration schemes.
 - Nicolas of Cusa (1401 1464)

Set $r_1 = 1, R_1 = \sqrt{2}$. Iterate

$$r_{n+1} = \frac{r_n + R_n}{2}, \qquad R_{n+1} = \sqrt{R_n \cdot r_{n+1}}.$$
 (1)

Then r_n, R_n converges to the same limit r and $\pi = \frac{4}{r}$.

Proof. We cannot really prove $\pi = \frac{4}{r}$ here but we could almost¹ prove that $r_n, R_n \longrightarrow r$ in two steps.

- Step 1. r_n, R_n converges.

We prove that r_n is increasing with upper bound and R_n is decreasing with lower bound. The convergence is then guaranteed by the least upper bound property of \mathbb{R} .

We prove by induction the following claim:

$$r_1 < r_2 < \dots < r_n < R_n < \dots < R_1 \tag{2}$$

for every n. Once this is done we see that r_n is increasing with upper bound R_1 , R_n is decreasing with lower bound r_1 .

- n=1. Since $r_1=1<\sqrt{2}=R_1$ the claim holds.
- From n to n+1. Assume

$$r_1 < r_2 < \dots < r_n < R_n < \dots < R_1 \tag{3}$$

we will prove

$$r_1 < r_2 < \dots < r_n < r_{n+1} < R_{n+1} < R_n < \dots < R_1 \tag{4}$$

It suffices to show $r_n < r_{n+1} < R_{n+1} < R_n$.

We have

$$r_{n+1} = \frac{r_n + R_n}{2} > \frac{r_n + r_n}{2} = r_n.$$
(5)

$$r_{n+1} = \frac{r_n + R_n}{2} < \frac{R_n + R_n}{2} = R_n \tag{6}$$

^{1.} We do not have a rigorous definition of "converge" yet.

Applying (6) to $R_{n+1} = \sqrt{R_n \cdot r_{n+1}}$ we have

$$R_{n+1} = \sqrt{R_n \cdot r_{n+1}} < \sqrt{R_n \cdot R_n} = R_n \tag{7}$$

and

$$R_{n+1} = \sqrt{R_n \cdot r_{n+1}} > \sqrt{r_{n+1} \cdot r_{n+1}} = r_{n+1}.$$
(8)

Thus we have proved $r_n < r_{n+1} < R_{n+1} < R_n$.

- Step 2. The limits are the same.

Denote by
$$r, R$$
 the limits of r_n, R_n . Now take $n \to \infty$ in $r_{n+1} = \frac{r_n + R_n}{2}$. We have $r = \frac{r+R}{2}$ which immediately gives $r = R$.

The proof now ends.

• Richard Brent and Eugene Salamin in 1975 (independently). Set $a_0 = 1, b_0 = \frac{1}{\sqrt{2}}, s_0 = \frac{1}{2}$ and now iterate:

$$a_k = \frac{a_{k-1} + b_{k-1}}{2}, \quad b_k = \sqrt{a_{k-1} b_{k-1}}, \quad c_k = a_k^2 - b_k^2, \quad s_k = s_{k-1} - 2^k c_k \tag{9}$$

and finally set

$$\pi_k = \frac{2 a_k^2}{s_k}.\tag{10}$$

Then each iteration roughly doubles the correct digits in π_k .

- Calculation of π through infinite series.
 - John Wallis:

$$\frac{2}{\pi} = \frac{2 \times 2}{1 \times 3} \cdot \frac{4 \times 4}{3 \times 5} \cdot \frac{6 \times 6}{5 \times 7} \cdots$$
(11)

• James Gregory:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
(12)

• Srinivasan Ramanujan:

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{k=0}^{\infty} \frac{(4\,k)!\,(1103 + 26390\,k)}{(k!)^4\,396^{4k}} \tag{13}$$

Each term gives 8 more correct digits.

• David and Gregory Chudnovsky²:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} (-1)^k \frac{(6\,k)!}{(3\,k)!\,(k!)^3} \frac{13591409 + 545140134\,k}{640320^{3k+3/2}}.$$
(14)

Each term gives 14 more correct digits.

• BBP formula.

In 1996, David H. Bailey, Peter Borwein and Simon Plouffe discovered the formula

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$
(15)

^{2.} See The Mountains of Pi, The New Yorker, Mar. 2, 1992 for the story of Chudnovsky brothers.

and realized that it allows computation of digits of π starting from any location without calculating the digits before this location. The catch is that the expansion of π here must be in base 16.

Exercise 1. Calculate the binary expansion of 11/3 to four digits.

Example 1. A similar formula is the following, for ln 2:

$$\ln 2 = \sum_{k=1}^{\infty} \frac{1}{k \, 2^k}.\tag{16}$$

Assume that $\ln 2 = 0.a_1a_2a_3\cdots$ in binary expansion. Let's say we would like to calculate a_3 . Now what $\ln 2 = 0.a_1a_2a_3\cdots$ means is that

$$\ln 2 = \frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8} + \dots \tag{17}$$

Thus we see that

$$2^{2}\ln 2 = (2a_{1} + a_{2}) + \frac{a_{3}}{2} + \cdots$$
(18)

and $a_3 = 1$ if and only if the non-integer part of $2^2 \ln 2$ is no less than 1/2 and $a_3 = 0$ if it is less than 1/2. Now we have

$$2^{2}\ln 2 = 2 + \frac{1}{2} + \frac{1}{3 \cdot 2} + \dots = 2 + \frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{(k+2) 2^{k}}.$$
(19)

We notice that

$$0 < \sum_{k=1}^{\infty} \frac{1}{(k+2) 2^k} < \sum_{k=1}^{\infty} \frac{1}{3 2^k} = \frac{1}{3}.$$
 (20)

Thus we know that $a_3 = 1$.

Problem 1. Can base 10 digits be calculated using these formulas?

- For more on π , check out
 - The World of Pi: http://www.pi314.net;
 - \circ π : A Biography of the World's Most Mysterious Number, Alfred S. Posamentier, Ingmar Lehmann, Herbert A. Hauptman, Prometheus Books, 2004.

Exercise 2. Try to obtain (16) using Taylor expansion of $\ln(1+x)$.