Math 117 Fall 2014 Lecture 6 (Sept. 11, 2014)

- What is π ?
- The ratio between the circumference and diameter of a circle; or the ratio between the area and the square of the radius of a circle. But why are they the same number?
- The usual high school "proof" relies on two assumptions: As the number of sides increases,
- The area of the polygon approaches that of the circle;
- The circumference of the polygon approaches that of the circle.

Both are subtle questions to answer. Will be proved in 217 or 317.

- Calculation of π through iteration schemes.
- Nicolas of Cusa (1401-1464)

Set $r_{1}=1, R_{1}=\sqrt{2}$. Iterate

$$
\begin{equation*}
r_{n+1}=\frac{r_{n}+R_{n}}{2}, \quad R_{n+1}=\sqrt{R_{n} \cdot r_{n+1}} . \tag{1}
\end{equation*}
$$

Then r_{n}, R_{n} converges to the same limit r and $\pi=\frac{4}{r}$.
Proof. We cannot really prove $\pi=\frac{4}{r}$ here but we could almost ${ }^{1}$ prove that $r_{n}, R_{n} \longrightarrow r$ in two steps.

- Step 1. r_{n}, R_{n} converges.

We prove that r_{n} is increasing with upper bound and R_{n} is decreasing with lower bound. The convergence is then guaranteed by the least upper bound property of \mathbb{R}.

We prove by induction the following claim:

$$
\begin{equation*}
r_{1}<r_{2}<\cdots<r_{n}<R_{n}<\cdots<R_{1} \tag{2}
\end{equation*}
$$

for every n. Once this is done we see that r_{n} is increasing with upper bound R_{1}, R_{n} is decreasing with lower bound r_{1}.

- $n=1$. Since $r_{1}=1<\sqrt{2}=R_{1}$ the claim holds.
- From n to $n+1$. Assume

$$
\begin{equation*}
r_{1}<r_{2}<\cdots<r_{n}<R_{n}<\cdots<R_{1} \tag{3}
\end{equation*}
$$

we will prove

$$
\begin{equation*}
r_{1}<r_{2}<\cdots<r_{n}<r_{n+1}<R_{n+1}<R_{n}<\cdots<R_{1} \tag{4}
\end{equation*}
$$

It suffices to show $r_{n}<r_{n+1}<R_{n+1}<R_{n}$.
We have

$$
\begin{align*}
& r_{n+1}=\frac{r_{n}+R_{n}}{2}>\frac{r_{n}+r_{n}}{2}=r_{n} \tag{5}\\
& r_{n+1}=\frac{r_{n}+R_{n}}{2}<\frac{R_{n}+R_{n}}{2}=R_{n} \tag{6}
\end{align*}
$$

[^0]Applying (6) to $R_{n+1}=\sqrt{R_{n} \cdot r_{n+1}}$ we have

$$
\begin{equation*}
R_{n+1}=\sqrt{R_{n} \cdot r_{n+1}}<\sqrt{R_{n} \cdot R_{n}}=R_{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n+1}=\sqrt{R_{n} \cdot r_{n+1}}>\sqrt{r_{n+1} \cdot r_{n+1}}=r_{n+1} . \tag{8}
\end{equation*}
$$

Thus we have proved $r_{n}<r_{n+1}<R_{n+1}<R_{n}$.

- Step 2. The limits are the same.

Denote by r, R the limits of r_{n}, R_{n}. Now take $n \rightarrow \infty$ in $r_{n+1}=\frac{r_{n}+R_{n}}{2}$. We have $r=\frac{r+R}{2}$ which immediately gives $r=R$.
The proof now ends.

- Richard Brent and Eugene Salamin in 1975 (independently).

Set $a_{0}=1, b_{0}=\frac{1}{\sqrt{2}}, s_{0}=\frac{1}{2}$ and now iterate:

$$
\begin{equation*}
a_{k}=\frac{a_{k-1}+b_{k-1}}{2}, \quad b_{k}=\sqrt{a_{k-1} b_{k-1}}, \quad c_{k}=a_{k}^{2}-b_{k}^{2}, \quad s_{k}=s_{k-1}-2^{k} c_{k} \tag{9}
\end{equation*}
$$

and finally set

$$
\begin{equation*}
\pi_{k}=\frac{2 a_{k}^{2}}{s_{k}} \tag{10}
\end{equation*}
$$

Then each iteration roughly doubles the correct digits in π_{k}.

- Calculation of π through infinite sereis.
- John Wallis:

$$
\begin{equation*}
\frac{2}{\pi}=\frac{2 \times 2}{1 \times 3} \cdot \frac{4 \times 4}{3 \times 5} \cdot \frac{6 \times 6}{5 \times 7} \cdots \tag{11}
\end{equation*}
$$

- James Gregory:

$$
\begin{equation*}
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \tag{12}
\end{equation*}
$$

- Srinivasan Ramanujan:

$$
\begin{equation*}
\frac{1}{\pi}=\frac{\sqrt{8}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}} \tag{13}
\end{equation*}
$$

Each term gives 8 more correct digits.

- David and Gregory Chudnovsky²:

$$
\begin{equation*}
\frac{1}{\pi}=12 \sum_{k=0}^{\infty}(-1)^{k} \frac{(6 k)!}{(3 k)!(k!)^{3}} \frac{13591409+545140134 k}{640320^{3 k+3 / 2}} . \tag{14}
\end{equation*}
$$

Each term gives 14 more correct digits.

- BBP formula.

In 1996, David H. Bailey, Peter Borwein and Simon Plouffe discovered the formula

$$
\begin{equation*}
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right) \tag{15}
\end{equation*}
$$

[^1]and realized that it allows computation of digits of π starting from any location without calculating the digits before this location. The catch is that the expansion of π here must be in base 16 .

Exercise 1. Calculate the binary expansion of $11 / 3$ to four digits.
Example 1. A similar formula is the following, for $\ln 2$:

$$
\begin{equation*}
\ln 2=\sum_{k=1}^{\infty} \frac{1}{k 2^{k}} \tag{16}
\end{equation*}
$$

Assume that $\ln 2=0 . a_{1} a_{2} a_{3} \cdots$ in binary expansion. Let's say we would like to calculate a_{3}. Now what $\ln 2=0 . a_{1} a_{2} a_{3} \cdots$ means is that

$$
\begin{equation*}
\ln 2=\frac{a_{1}}{2}+\frac{a_{2}}{4}+\frac{a_{3}}{8}+\cdots \tag{17}
\end{equation*}
$$

Thus we see that

$$
\begin{equation*}
2^{2} \ln 2=\left(2 a_{1}+a_{2}\right)+\frac{a_{3}}{2}+\cdots \tag{18}
\end{equation*}
$$

and $a_{3}=1$ if and only if the non-integer part of $2^{2} \ln 2$ is no less than $1 / 2$ and $a_{3}=0$ if it is less than $1 / 2$. Now we have

We notice that

$$
\begin{equation*}
2^{2} \ln 2=2+\frac{1}{2}+\frac{1}{3 \cdot 2}+\cdots=2+\frac{1}{2}+\sum_{k=1}^{\infty} \frac{1}{(k+2) 2^{k}} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
0<\sum_{k=1}^{\infty} \frac{1}{(k+2) 2^{k}}<\sum_{k=1}^{\infty} \frac{1}{32^{k}}=\frac{1}{3} . \tag{20}
\end{equation*}
$$

Thus we know that $a_{3}=1$.
Problem 1. Can base 10 digits be calculated using these formulas?

- For more on π, check out
- The World of Pi: http://www.pi314.net;
- π : A Biography of the World's Most Mysterious Number, Alfred S. Posamentier, Ingmar Lehmann, Herbert A. Hauptman, Prometheus Books, 2004.

Exercise 2. Try to obtain (16) using Taylor expansion of $\ln (1+x)$.

[^0]: 1. We do not have a rigorous definition of "converge" yet.
[^1]: 2. See The Mountains of Pi, The New Yorker, Mar. 2, 1992 for the story of Chudnovsky brothers.
