
Math 117 Fall 2014 Lecture 5 (Sept. 10, 2014)

� Prehistory.
Before the invention of logarithm, people calculated multiplications through the following

trigonometric identities:

sin(A�B) = sinA cosB � cosA sinB; (1)
cos(A�B) = cosA cosB � sinA sinB: (2)

From these one easily obtain

sinA sinB= 1
2
[cos (A¡B)¡ cos (A+B)]: (3)

More speci�cally, say they would like to calculate a�b, where a; b are between 0 and 1. They
followed the procedure1

1. Find A;B such that sinA= a; sinB= b.

2. Calculate A+B;A¡B.

3. Find cos(A¡B); cos (A+B) and the result a� b follows immediately from (3).

Note. These trig identities are important. Please remember them.2

� Exponent.
Michael Sti�el noticed 2m �2n=2m+n. Thus to calculate the product of a=2m and b=2n,

it su�ces to �nd their �exponents� (representatives) m; n, add them up, and then �nd the
number having �exponent� m + n. Such property had been known for a long time before
Sti�el.

� John Napier (1550 - 1617).
Napier de�ned logarithms physically. Imagine two particles moving along two parallel

straight lines. One with speed proportional to its distance to the origin, and the other with
constant speed. Then we can make the second particle an �exponent� of the �rst and call its
location the �log� of the location of the �rst one at the same time.3

� Logarithm tables.

1. This procedure is only practical because the existence of very accurate sin and cos tables. The reasonwhy ancientswanted
to calculate sine and cosine is that in their world view the sun, the moon and all the stars move along circles. Ideally the earth
would be at the center. But this contradicted observations such as seasons are of di�erent lengths. Therefore itmay be necessary
to move earth o� the center. But where? To determine where earth should be it became necessary to calculate the length of
the straight line segment connecting two points on the circle based on the angle it's facing. This is essentially sine. See Was
Calculus Invented in India by David Bressoud inThe College Mathematics Journal, Volume 33, No. 1, Jan. 2002, pp. 2 � 13.

2. If you are comfortable with complex numbers, then there is one simpleway to remember. Recall that eiA=cosA+ i sinA,
eiB = cosB+ i sinB. Then we have for example

cos(A+B)+ i sin(A+B) = ei(A+B)= eiA eiB =(cosA+ i sinA) (cosB+ i sinB) (4)

and the identities follow from the fact that i2=¡1.
3. If we assume the speed of the second particle to be 1 and the speed of the �rst particle equals exactly the distance, then

we would have (let y be the location of the �rst particle and x be that of the second)

dy
dx

= y (5)

which gives y(x)= ex.

Exercise 1. What if the speed of the second particle is not 1?



The physical de�nition of Napier is not practical. To be able to calculate logarithms,
tables linking numbers with their �exponents� must be built. We can re-write Sti�el's
observation into a table:

1 2 4 8 16 32 64 ���
0 1 2 3 4 5 6 ���

But this table is not practical in that it is too sparse: Most numbers do not appear in
the �rst row � for example it cannot help us calculate 5� 7.

The idea to �x this is to use powers of numbers closer to 1. For example, if we use 1.1,
we would have

1 1.1 1.2 1.3 1.5 1.6 1.8 ��� 2.6 ��� 9.0 9.8 10.8
0 1 2 3 4 5 6 ��� 10 ��� 23 24 25

Note that it is not necessary to go beyond 10 as we can always pre-process the numbers
a; b such that they are between 1 and 10.

This new table is de�nitely much more practical, but still is a bit too sparse. Thus we
could try to use 1.01;1.001; and so on. At the end of the day, Joost Burg built a table using
1+ 10¡4 and Napier himself built one using 1+ 10¡7.

� Through building such tables, it must be observed that

1.110� 1.01100� 1.0011000; etc. (6)

Thus it is natural to suspect that there is a �limit� to the sequence of numbers (1+10¡k)10
k
or

more generally (1+1/n)n as n=1;2;3; :::: This number is denoted e, and natural logarithm
was de�ned as the �exponent� for any number with respect to this number e.

� Why does e exist?

� We can show

¡
�
1+ 1
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�n
is increasing when n gets larger and larger.

¡ There is a number M such that for all n2N.
�
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In other words we can show that the sequence
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increases with an upperbound (a �ceiling�). Naturally we expect there to be a �lowest
possible ceiling�, or �least upper bound�. And this least upper bound, to which the

sequence
n�

1+ 1

n

�no
forever approaches but never reaches, is our number e.

� Surprisingly the last step of our argument, the existence of this �least upper bound�,
cannot be proved and has to be assumed. In fact, the rigorous de�nition of R, the set
of real numbers, is an extension of Q in which least upper bound always exists.

� Proof of
�
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is increasing.

Proof. Since all these numbers are positive, it su�ces to prove�
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for all n2N.



Now we calculate�
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We apply the following �Bernoulli's inequality�:

Let x>¡1, n2N. Then (1+x)n> 1+nx.

Setting x=¡ 1

(n+1)2
in (12) we see that x >¡1 so Bernoulli's inequality applies.

We have �
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Thus the proof ends. �

� Proof of Bernoulli's inequality.

Proof. We prove by induction.

¡ The case n=1. In this case we have

(1+x)n=1+x=1+nx (17)

so the inequality holds.

¡ The case �If the inequality is true for n, then it is true for n+1�. Assume that

(1+x)n> 1+nx: (18)

Multiply both sides by 1+ x. Since x>¡1 we have

(1+x)n+1> (1+nx) (1+x): (19)

As

(1+nx) (1+x)= 1+nx+x+nx2> 1+ (n+1)x (20)

we have (1+x)n+1> 1+ (n+1)x, that is the inequality still holds for n+1.

Thus ends the proof. �



� Proof of the existence of an upper bound.

Exercise 2. Prove that
¡
1+

1

n

�
n+1 is decreasing.

Exercise 3. Prove that
¡
1+

1

n

�n has an upper bound. (Hint:4 )

� Other formulas for e.

� Using
�
1+ 1

n

�n
to calculate e is not very e�cient.

� We have

e=1+1+ 1
2!
+ 1
3!
+ ���+ 1

n!
+ 1
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+ ��� (21)

where ! is �factorial�, that is 2!= 2� 1; 3!= 3� 2� 1; 4!= 4� 3� 2� 1 and so on.

Exercise 4. Calculate e through
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1
2!
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with n=3;6;9. For each n �nd m2N such that
¡
1+
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m

�m has approximately the same accuracy.

� Euler discovered the following two formulas:
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and
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(the pattern is 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; 1; :::)
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for every n2N. Now use the fact that
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is decreasing.
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