
Math 117 Fall 2014 Lecture 4 (Sept. 8, 2014)

� Reading:

� Required reading: Dr. Bowman's book �1.B.

� Optional reading: �1.C.

� 2
p

is irrational, that is 2
p

is not rational.
Notation. The symbolic way of writing this is 2

p
2/Q. (Recall that 2 means belongs to)

� The signi�cance of this.

¡ N: Justi�ed by the need of counting;

¡ Z;Q: Justi�ed by the need to solve a+ x= b; a x= b, which are universal in
everyday life.

¡ Presumably, by considering more complicated equations we could further
extend the number system. But why should we do this? Why do we need
numbers to satisfy equations like x2¡ 2=0 or x2+1=0?

¡ For x2 + 1 = 0 the reason is more subtle, but for x2 ¡ 2 = 0, it's because the
length of the diagonal of the unit square must satisfy this equation. Thus if
we admit that:

� Right angle is possible;

� The Pythagorean Theorem is true;

� For any �nite line segment, its length is given by a number;

Then we have to admit that this equation has a solution x which is a number.
Therefore if the solution cannot be rational, we must admit the existence
of �irrational� numbers.

¡ The proof of the irrationality of 2
p

actually caused the ancient Greeks to turn
away from algebra and focus on geometry.

� The proof.
Proof (of irrationality of 2

p
). We prove by contradiction. Assume that there is

a rational number solving x2¡2=0, then by de�nition of rational numbers, there are
p; q2Z; q > 0; (p; q)= 1 such that�

p
q

�
2

¡ 2=0: (1)

Multiply both sides by q2 (Note that this is OK because our q > 0) and move terms
around, we reach

p2=2 q2: (2)

Thus p2 is even. Consequently p is even. Thus there is k 2 Z such that p = 2 k.
Substitute this back into (2) we have

(2 k)2=2 q2 (3)

which simpli�es to

q2=2 k2: (4)



This means q2 is even and consequently q is even. Now that both p; q are even, we
have 2 to be a common divisor of p; q. This contradicts (p; q) = 1 which says the
greatest common divisor of p; q is 1.

Example 1. Prove that 3
p

is irrational.

Proof. The proof is almost identical to that for 2
p

, just change 2 to 3: We have�
p
q

�
2

¡ 3=0 (5)

and then

p2=3 q2 (6)

which means 3j p2. Recall the corollary of the Fundamental Theorem of Arithmetic:

If p is a prime, a; b 2 Z, then the following holds: If pj (a b) then
either pj a or pj b.

Thus we have 3j p or 3j p which of course is simply 3j p. Therefore there is k 2Z
such that p=3 k. Substitute this back into (6) we have

q2=3 k2 (7)

which means 3j q. So 3 is a common divisor to p; q and we reach a contradiction. �

Exercise 1. Prove the irrationality of 5
p

; 7
p

, 11
p

.

Exercise 2. Prove the irrationality of 3 2
p

. 1

Exercise 3. Prove the irrationality of 35
p

.

Problem 1. Let n2N. Figure out for which n n
p

is rational and for which n it is not. Justify
your claim. (Meaning: You need to prove it).

Problem 2. Mr. Ben Pineau in our class provided the following clever proof for 3
p

.

If there are p; q2Z, q >0, such that p2=3 q2. We see that p; q are both even or
both odd. Since (p; q)= 1, they have to be both odd. Write p=2 k¡ 1; q=2 l¡ 1
and substitute into the equation, we have

4 k2¡ 4 k+1= 12 l2¡ 12 l+3 (8)

which can be re-arranged into

2 [k2¡ k¡ 3 l2+3 l] = 1: (9)

Note that the left hand side is even while the right hand side is odd. Contradiction.

Check whether this method can answer the question in Problem 1.

� Calculation of 2
p

.

� Method 1 (Ancient Babylon).

1. This is also a famous number, in that it not only is irrational, but also is not constructible, that is cannot be constructed
through straightedge and compass (meaning, if you are given a line segment, you cannot construct another line segment whose
length is 3 2

p
times that of the original segment). Note that 2

p
is constructible � Try to show this! As the story goes, there

was a plague in the city state of Delos. Somehow the people there believed that the cause was Apollo and the solution was to
double the size of the cubic altar. Like every normal person, they doubled the sides of the altar but the plague did not stop!!
They then realized that the correct side length should be 3 2

p
but of course had not idea how to obtain such a length. Thus

the famous �doubling the cube� problem. That 3 2
p

is not constructible was proved by Pierre Wantzel in 1837. Unfortunately,
the key ingredient of the proof is not calculus but Galois theory, part of abstract algebra.



Take any a1> 0 with a1
2=/ 2. Set b1=2/a1. Now iterate

an+1=
1
2
(an+ bn); bn+1=

1
1

2

�
1

an
+ 1

bn

�: (10)

Then an; bn! 2
p

.

Exercise 4. Prove the following.

a) For every n, an bn=2;

b) For every n> 2, an>bn;

c) When n> 2 an is decreasing and bn is increasing. That is a2>a3>a4> ���; b2<b3<b4< ���.

Exercise 5. Modify the algorithm for the calculation of 7
p

.

� Method 2 (Newton's method)
Take any x1> 0. Iterate

xn+1=
xn
2
+ 1
xn
: (11)

Then xn¡! 2
p

.

Exercise 6. Critique on the following �proof�:

Let x 2R be the real number that is the limit of xn. Then taking n!1 in
(11) we have

x=
x

2
+
1

x
(12)

which gives x2=2. Therefore the limit of xn is 2
p

.

� Method 3 (Continued fractions)
We have

2
p

=1+ 1
2+ 1

2+
1

2+
1

2+
1

���

: (13)

Exercise 7. Calculate a few terms

1+
1

2
; 1+

1

2+
1

2

; :::: (14)

to provide numerical evidence for (13).

Exercise 8. Suppose we can treat such in�nite fractions as a usual number, �nd a simple way
to see that the continued fraction should be 2

p
. (Hint:2 )

Remark 2. It is important to realize that for in�nite processes like the fxng above
or the right hand side of (13), it is not guaranteed that we could manipulate it as a
usual number. Such manipulation may lead to results like

1+2+3+4+ ���=¡ 1
12

(15)

which only started to make sense when interpreted in a certain way related to quantum
mechanics. See e.g. this numberphile video: http://youtu.be/w-I6XTVZXww.

Although (15) got �saved� by quantum mechanics, in most situations we should
be more careful and prove �convergence� � that is show that there is indeed a certain
number that is related in an appropriate way to the in�nite process � �rst.

2. Set x=1+
1

2+
1
���

and �nd an equation for x. Note that this is not a proof of (13).
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