Math 117 Fall 2014 Lecture 3 (Sept. 5, 2014)

- How detailed should your answers to Homework 1 be:

For example, to prove that the product of two odd numbers is still odd, you should write something like:

Recall that a natural number a is odd if and only if $a=2 k-1$ for some natural number k.

Denote by a, b the two odd numbers. Then there are natural numbers k, l such that $a=2 k-1, b=2 l-1$. This gives

$$
\begin{equation*}
a b=(2 k-1)(2 l-1)=4 k l-2 k-2 l+1=2(2 k l-k-l+1)-1 . \tag{1}
\end{equation*}
$$

If we denote $m:=2 k l-k-l+1$ then we have $a b=2 m-1$. The only thing left to show is $m \geqslant 1$ and is thus a natural number. We notice

$$
\begin{equation*}
2 k l-k-l+1=k l+(k-1)(l-1) \geqslant k l \geqslant 1 . \tag{2}
\end{equation*}
$$

Therefore $m \geqslant 1$ is a natural number and $a b$ must be odd.

- Last bit of number theory.
- Recall the Fundamental Theorem of Arithmetic:

Every natural number greater than 1 either is prime or is a product of primes. Furthermore, this factorization is unique: the order of the primes is arbitrary, but the primes themselves are not.

- Now we prove an immediate but important consequence:

Corollary 1. Let p be prime and let $a, b \in \mathbb{N}$ (meaning: a, b are members of the set/collection \mathbb{N}, in other words a, b are natural numbers). If $p \mid(a b)$ then either $p \mid a$ or $p \mid b$.

Proof. Let $a=p_{1} \cdots p_{r} ; b=q_{1} \cdots q_{s}$ be the unique prime factorizations of a, b respectively. Then we have

$$
\begin{equation*}
a b=p_{1} \cdots p_{r} q_{1} \cdots q_{s} . \tag{3}
\end{equation*}
$$

By the Fundamental Theorem of Arithmetic, this is the unique factorization of $a b$. Since $p \mid(a b), p$ equals one of $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}$. Now if $p=p_{i}$ for some $i \in\{1, \ldots, r\}$, we have $p \mid a$. If not then necessarily $p=q_{j}$ for some $j \in\{1, \ldots, s\}$ which leads to $p \mid b$.

Remark 2. Note that p being prime is crucial here.
Exercise 1. Let $a, b, c \in \mathbb{N}$ and assume $c \mid(a b)$. Does it follow that $c \mid a$ or $c \mid b$? Justify.
Note. "Justify" means you should prove your claim.

- $\mathbb{N} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q}$.
- The generalizations come from algebra. ${ }^{1}$
- Solving $x+a=b$ for all $a, b \in \mathbb{N}$ leads to \mathbb{Z}.

Example 3. Prove $(-1) \cdot(-1)=1$.

[^0]Proof. We have

$$
\begin{equation*}
(-1) \cdot 1+1 \cdot 1=(-1+1) \cdot 1=0 \cdot 1=0 \tag{4}
\end{equation*}
$$

and on the other hand

$$
\begin{equation*}
(-1) \cdot 1+(-1) \cdot(-1)=(-1) \cdot(1+(-1))=(-1) \cdot 0=0 . \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
(-1) \cdot 1+1 \cdot 1=(-1) \cdot 1+(-1) \cdot(-1) \tag{6}
\end{equation*}
$$

which (through confrontation!) gives $1 \cdot 1=(-1) \cdot(-1)$ and the proof ends.
Remark 4. It is important to notice that, mysteriously, once we extend \mathbb{N} to \mathbb{Z}, no more extension is needed to be able to solve $x+a=b$ for all $a, b \in \mathbb{Z}$ (not only in $\mathbb{N}!$)

- Solving $x \cdot a=b$ for all $a, b \in \mathbb{Z}$ leads to \mathbb{Q}.
- Thus we have

$$
\begin{equation*}
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q>0,(p, q)=1\right\} \tag{7}
\end{equation*}
$$

that is
any rational number can be written uniquely as $\frac{p}{q}$ where p, $q \in \mathbb{Z}, q>0$, and the greatest common divisor of (p, q) is 1 .
The requirement $q>0$ is necessary since otherwise we would have two representations for one rational number, for example $\frac{2}{5}=\frac{-2}{-5}$.

- We can define "order" on \mathbb{Q}. ${ }^{2}$ Let $a=\frac{p_{1}}{q_{1}}, b=\frac{p_{2}}{q_{2}} \in \mathbb{Q}$, where the representations $\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}$ satisfy the requirements in (7). Then we say
- $\quad a=b$ if and only if $p_{1} q_{2}=p_{2} q_{1}$;
- $a<b$ if and only if $p_{1} q_{2}<p_{2} q_{1}$;
- $a>b$ if and only if $b<a$.

Exercise 2. Let $a, b \in \mathbb{Q}$. Prove that exactly one of the following holds: $a=b, a<b, a>b$.
Exercise 3. In this exercise we prove that this order on \mathbb{Q} is consistent with the order on \mathbb{Z}. Let $a, b \in \mathbb{Z}$. Then $a, b \in \mathbb{Q}$. Prove that $a<b$ as integers if and only if $a<b$ as rationals (that is if $a<b$ as integers then $a<b$ as rationals, and if $a<b$ as rationals then $a<b$ as integers.)
Exercise 4. Let $a, b, c \in \mathbb{Q}$. Prove that $a<b, b<c$ then $a<c$.

- Operations on \mathbb{Q}.

Notation. ":=" means"defined as".

$$
\begin{align*}
\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}} & :=\frac{p_{1} q_{2}+p_{2} q_{1}}{q_{1} q_{2}} . \tag{8}\\
\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}} & :=\frac{p_{1} q_{2}-p_{2} q_{1}}{q_{1} q_{2}} \tag{9}\\
\quad \frac{p_{1}}{q_{1}} \cdot \frac{p_{2}}{q_{2}} & :=\frac{p_{1} p_{2}}{q_{1} q_{2}} . \tag{10}
\end{align*}
$$

[^1]Exercise 5. Let $a, b \in \mathbb{Q}$. Prove that $a<b$ if and only if $a-b<0$. Make sure you realize that this indeed needs to be proved. ${ }^{3}$

Remark 5. What is wrong with defining

$$
\begin{equation*}
\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}=\frac{p_{1}+p_{2}}{q_{1}+q_{2}} ? \tag{11}
\end{equation*}
$$

The answer is nothing is wrong, except that the "numbers" $\frac{p}{q}$ with this addition rule do not behave like everyday numbers anymore. Indeed, if we take away and put (), (11) becomes the perfect vector addition rule:

$$
\begin{equation*}
\binom{p_{1}}{q_{1}}+\binom{p_{2}}{q_{2}}=\binom{p_{1}+p_{2}}{q_{1}+q_{2}} . \tag{12}
\end{equation*}
$$

Remark 6. An article that may be too early to mention now is Successive generalizations in the theory of numbers by Eric Temple Bell in The American Mathematical Monthly, Vol. 34, no. 2, Feburary 1927, pp. 55-75. You need to know abstract algebra to understand it, but on the other hand it could help you understand why people bother to define things like ideals.

- Properties of \mathbb{Q}.
- The most important property of \mathbb{Q} is that it is dense:

Let $a, b \in \mathbb{Q}, a \neq b$. Then there is $c \in \mathbb{Q}$ lying in between a and b.

Proof. Let $a, b \in \mathbb{Q}, a \neq b$. Then either $a<b$ or $a>b$. We prove the former case and leave the latter as exercise. Let $a=\frac{p_{1}}{q_{1}}, b=\frac{p_{2}}{q_{2}}$. Then $a<b$ means $p_{1} q_{2}<p_{2} q_{1}$.

Now take $c=\frac{a+b}{2}=\frac{p_{1} q_{2}+p_{2} q_{1}}{2 q_{1} q_{2}}$. We try to prove $a<c<b$. First we prove $a<c$. By definition all we need to prove is

$$
\begin{equation*}
2 p_{1} q_{1} q_{2}<p_{1} q_{1} q_{2}+p_{2} q_{1}^{2} . \tag{13}
\end{equation*}
$$

Now as $a<b$ we have $p_{1} q_{2}<p_{2} q_{1}$. As $q_{1}>0$ we can multiply both sides by q_{1} to obtain

$$
\begin{equation*}
p_{1} q_{1} q_{2}<p_{2} q_{1}^{2} . \tag{14}
\end{equation*}
$$

Now adding $p_{1} q_{1} q_{2}$ to both sides we obtain (13) and finishes the proof of $a<c$.
Exercise 6. Prove $c<b$.
Exercise 7. Prove the case $a>b$.

[^2]
[^0]: 1. The word "algebra" comes from the book Hidab al-jabr wal-muqubala written in 825 AD by al-Khwarizmi, whose name becomes "algorithm". The title means "Science of restoration and confrontation" where "restoration" is $x-2=7 \Longrightarrow x=9$ (restored!) and "confrontation" is $x+3=10 \Longrightarrow x+3=3+7 \Longrightarrow x=7$ where the two 3 's confront each other and cancel.
[^1]: 2. Note that here we have obtained \mathbb{Q} from \mathbb{Z}, therefore we should define the order on \mathbb{Q} through operations in \mathbb{Z}. As of now we haven't defined the set of real numbers \mathbb{R} yet, and therefore there is no natural "order" that \mathbb{Q} could inherit.
[^2]: 3. Because our definitions of $a<b$ and $a-b$ are independently given.
