MATH 117 FALL 2014 LECTURE 3 (SEPT. 5, 2014)

• How detailed should your answers to Homework 1 be:

For example, to prove that the product of two odd numbers is still odd, you should write something like:

Recall that a natural number a is odd if and only if a = 2 k - 1 for some natural number k.

Denote by a, b the two odd numbers. Then there are natural numbers k, l such that a = 2 k - 1, b = 2 l - 1. This gives

$$a b = (2 k - 1) (2 l - 1) = 4 k l - 2 k - 2 l + 1 = 2 (2 k l - k - l + 1) - 1.$$
(1)

If we denote m := 2 k l - k - l + 1 then we have a b = 2 m - 1. The only thing left to show is $m \ge 1$ and is thus a natural number. We notice

$$2kl - k - l + 1 = kl + (k - 1)(l - 1) \ge kl \ge 1.$$
(2)

Therefore $m \ge 1$ is a natural number and a b must be odd.

- Last bit of number theory.
 - Recall the Fundamental Theorem of Arithmetic:

Every natural number greater than 1 either is prime or is a product of primes. Furthermore, this factorization is unique: the order of the primes is arbitrary, but the primes themselves are not.

• Now we prove an immediate but important consequence:

COROLLARY 1. Let p be prime and let $a, b \in \mathbb{N}$ (meaning: a, b are members of the set/collection \mathbb{N} , in other words a, b are natural numbers). If p|(ab) then either p|a or p|b.

Proof. Let $a = p_1 \cdots p_r$; $b = q_1 \cdots q_s$ be the unique prime factorizations of a, b respectively. Then we have

$$a b = p_1 \cdots p_r q_1 \cdots q_s. \tag{3}$$

By the Fundamental Theorem of Arithmetic, this is the unique factorization of a b. Since p|(a b), p equals one of $p_1, ..., p_r, q_1, ..., q_s$. Now if $p = p_i$ for some $i \in \{1, ..., r\}$, we have p|a. If not then necessarily $p = q_j$ for some $j \in \{1, ..., s\}$ which leads to p|b. \Box

Remark 2. Note that *p* being prime is crucial here.

Exercise 1. Let $a, b, c \in \mathbb{N}$ and assume $c \mid (a b)$. Does it follow that $c \mid a \text{ or } c \mid b$? Justify.

Note. "Justify" means you should prove your claim.

- $\mathbb{N} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q}$.
 - The generalizations come from algebra.¹
 - Solving x + a = b for all $a, b \in \mathbb{N}$ leads to \mathbb{Z} .

Example 3. Prove $(-1) \cdot (-1) = 1$.

^{1.} The word "algebra" comes from the book *Hidab al-jabr wal-muqubala* written in 825AD by al-Khwarizmi, whose name becomes "algorithm". The title means "Science of restoration and confrontation" where "restoration" is $x - 2 = 7 \implies x = 9$ (restored!) and "confrontation" is $x + 3 = 10 \implies x + 3 = 3 + 7 \implies x = 7$ where the two 3's confront each other and cancel.

Proof. We have

$$(-1) \cdot 1 + 1 \cdot 1 = (-1+1) \cdot 1 = 0 \cdot 1 = 0 \tag{4}$$

and on the other hand

$$(-1) \cdot 1 + (-1) \cdot (-1) = (-1) \cdot (1 + (-1)) = (-1) \cdot 0 = 0.$$
(5)

Therefore

$$(-1) \cdot 1 + 1 \cdot 1 = (-1) \cdot 1 + (-1) \cdot (-1) \tag{6}$$

which (through confrontation!) gives $1 \cdot 1 = (-1) \cdot (-1)$ and the proof ends.

Remark 4. It is important to notice that, mysteriously, once we extend \mathbb{N} to \mathbb{Z} , no more extension is needed to be able to solve x + a = b for all $a, b \in \mathbb{Z}$ (not only in \mathbb{N} !)

- Solving $x \cdot a = b$ for all $a, b \in \mathbb{Z}$ leads to \mathbb{Q} .
 - Thus we have

$$\mathbb{Q} = \left\{ \frac{p}{q} | p, q \in \mathbb{Z}, q > 0, (p, q) = 1 \right\}$$

$$\tag{7}$$

that is

any rational number can be written uniquely as $\frac{p}{q}$ where p,

 $q \in \mathbb{Z}, q > 0$, and the greatest common divisor of (p, q) is 1.

The requirement q > 0 is necessary since otherwise we would have two representations for one rational number, for example $\frac{2}{5} = \frac{-2}{-5}$.

- We can define "order" on
$$\mathbb{Q}$$
.² Let $a = \frac{p_1}{q_1}, b = \frac{p_2}{q_2} \in \mathbb{Q}$, where the representations $\frac{p_1}{q_1}, \frac{p_2}{q_2}$ satisfy the requirements in (7). Then we say

- a = b if and only if $p_1 q_2 = p_2 q_1$;
- a < b if and only if $p_1 q_2 < p_2 q_1$;
- a > b if and only if b < a.

Exercise 2. Let $a, b \in \mathbb{Q}$. Prove that exactly one of the following holds: a = b, a < b, a > b.

Exercise 3. In this exercise we prove that this order on \mathbb{Q} is consistent with the order on \mathbb{Z} . Let $a, b \in \mathbb{Z}$. Then $a, b \in \mathbb{Q}$. Prove that a < b as integers if and only if a < b as rationals (that is if a < b as integers then a < b as rationals, and if a < b as rationals then a < b as integers.)

Exercise 4. Let $a, b, c \in \mathbb{Q}$. Prove that a < b, b < c then a < c.

- Operations on Q.

NOTATION. ":=" means "defined as".

$$\frac{p_1}{q_1} + \frac{p_2}{q_2} := \frac{p_1 \, q_2 + p_2 \, q_1}{q_1 \, q_2}.\tag{8}$$

$$\frac{p_1}{q_1} - \frac{p_2}{q_2} := \frac{p_1 \, q_2 - p_2 \, q_1}{q_1 \, q_2} \tag{9}$$

$$\frac{p_1}{q_1} \cdot \frac{p_2}{q_2} := \frac{p_1 \, p_2}{q_1 \, q_2}.\tag{10}$$

^{2.} Note that here we have obtained \mathbb{Q} from \mathbb{Z} , therefore we should define the order on \mathbb{Q} through operations in \mathbb{Z} . As of now we haven't defined the set of real numbers \mathbb{R} yet, and therefore there is no natural "order" that \mathbb{Q} could inherit.

Exercise 5. Let $a, b \in \mathbb{Q}$. Prove that a < b if and only if a - b < 0. Make sure you realize that this indeed needs to be proved.³

Remark 5. What is wrong with defining

$$\frac{p_1}{q_1} + \frac{p_2}{q_2} = \frac{p_1 + p_2}{q_1 + q_2}?$$
(11)

The answer is nothing is wrong, except that the "numbers" $\frac{p}{q}$ with this addition rule do not behave like everyday numbers anymore. Indeed, if we take away – and put (), (11) becomes the perfect vector addition rule:

$$\begin{pmatrix} p_1 \\ q_1 \end{pmatrix} + \begin{pmatrix} p_2 \\ q_2 \end{pmatrix} = \begin{pmatrix} p_1 + p_2 \\ q_1 + q_2 \end{pmatrix}.$$
 (12)

Remark 6. An article that may be too early to mention now is *Successive* generalizations in the theory of numbers by Eric Temple Bell in The American Mathematical Monthly, Vol. 34, no. 2, Feburary 1927, pp. 55-75. You need to know abstract algebra to understand it, but on the other hand it could help you understand why people bother to define things like ideals.

- \circ Properties of \mathbb{Q} .
 - The most important property of \mathbb{Q} is that it is dense:

Let $a, b \in \mathbb{Q}, a \neq b$. Then there is $c \in \mathbb{Q}$ lying in between a and b.

Proof. Let $a, b \in \mathbb{Q}$, $a \neq b$. Then either a < b or a > b. We prove the former case and leave the latter as exercise. Let $a = \frac{p_1}{q_1}$, $b = \frac{p_2}{q_2}$. Then a < b means $p_1 q_2 < p_2 q_1$.

Now take $c = \frac{a+b}{2} = \frac{p_1 q_2 + p_2 q_1}{2 q_1 q_2}$. We try to prove a < c < b. First we prove a < c. By definition all we need to prove is

$$2 p_1 q_1 q_2 < p_1 q_1 q_2 + p_2 q_1^2.$$
(13)

Now as a < b we have $p_1q_2 < p_2q_1$. As $q_1 > 0$ we can multiply both sides by q_1 to obtain

$$p_1 q_1 q_2 < p_2 q_1^2. \tag{14}$$

Now adding $p_1 q_1 q_2$ to both sides we obtain (13) and finishes the proof of a < c.

Exercise 6. Prove c < b.

Exercise 7. Prove the case a > b.

^{3.} Because our definitions of a < b and a - b are independently given.