Math 117 Fall 2014 Homework 1 Solutions

Due Thursday Sept. 11 3pm in Assignment Box

Question 1. (5 PTs) Prove that 11 is prime but 57 is not.
Proof.

- $\quad 11$ is prime.

First for any number $n>11, n \nmid 11$. Now we check $1|11,11| 11$ but

$$
\begin{equation*}
2 \nmid 11,3 \nmid 11,4 \nmid 11,5 \nmid 11,6 \nmid 11,7 \nmid 11,8 \nmid 11,9 \nmid 11,10 \nmid 11 . \tag{1}
\end{equation*}
$$

Therefore the only divisors of 11 are 1 and 11 , which means 11 is prime.

- 57 is not prime (that is 57 is composite). Since $57=3 \times 19,3 \mid 57$ and therefore 57 is not prime.

Question 2. (5 PTs) Let n be an arbitrary natural number. Prove that $4 \nmid\left(n^{2}+2\right)$. (Hint: ${ }^{1}$)
Proof. Let n be an arbitrary natural number. Then either n is even or n is odd. We discuss the two cases.

- n is even.

By definition we know there is $k \in \mathbb{N}$ such that $n=2 k$. This gives $n^{2}+2=(2 k)^{2}+2=$ $4 k^{2}+2$. Now assume $4 \mid\left(n^{2}+2\right)$. Then there is $l \in \mathbb{N}$ such that

$$
\begin{equation*}
4 k^{2}+2=n^{2}+2=4 l \tag{2}
\end{equation*}
$$

which gives

$$
\begin{equation*}
2=4 l-4 k^{2}=4\left(l-k^{2}\right) \tag{3}
\end{equation*}
$$

which in turn leads to

$$
\begin{equation*}
1=2\left(l-k^{2}\right) \tag{4}
\end{equation*}
$$

The left hand side is odd and the right hand side is even. Contradiction. Therefore $4 \nmid\left(n^{2}+2\right)$.

- $\quad n$ is odd.

By definition there is $k \in \mathbb{N}$ such that $n=2 k-1$. This gives

$$
\begin{equation*}
n^{2}+2=(2 k-1)^{2}+2=4 k^{2}-4 k+3=2\left[2 k^{2}-2 k+2\right]-1 \tag{5}
\end{equation*}
$$

We have $2 k^{2}-2 k+2 \in \mathbb{Z}$ and furthermore it is no less than 1 . Therefore $n^{2}+2$ is odd and could not be divided by 4 .

Question 3. (5 PTs) Given that there are infinitely many pairs of prime numbers with difference $<7 \times 10^{7}$. Prove that there is a natural number $d<7 \times 10^{7}$ such that there are infinitely many pairs of prime numbers with difference exactly d.

Proof. Assume the contrary. Then for every $d<7 \times 10^{7}$ there are only finitely many pairs of primes with difference d. In other words, there are finitely many pairs with difference 1 , finitely many pairs with difference $2, \ldots$, finitely many pairs with difference $7 \times 10^{7}-1$. Since the sum of $7 \times 10^{7}-1$ numbers is still finite, we see that there are finitely many pairs with difference less than 7×10^{7}. This contradicts what is given.

[^0]Question 4. (5 pts) Prove that there are infinitely many primes of the form $4 n+3$ (that is when divided by 4 , the remainder is 3 . (Hint: ${ }^{2}$)

Proof. We prove by contradiction. Assume the contrary. Then there are only finitely many primes of the form $4 n+3$. We can list them as p_{1}, \ldots, p_{m}. Now define

$$
\begin{equation*}
q=4 p_{1} p_{2} \cdots p_{m}-1 . \tag{6}
\end{equation*}
$$

We will show that $q \div 4$ has remainders both 1 and 3 which is of course not possible.
On one hand, by our definition of q, we have

$$
\begin{equation*}
q=4\left(p_{1} p_{2} \cdots p_{m}-1\right)+3 . \tag{7}
\end{equation*}
$$

Therefore $q \div 4$ has remainder 3 .
On the other hand, since $p_{1}, \ldots, p_{m} \mid(q+1)$, none of the p_{i} 's could be a divisor for q. Together with the fact that q is odd, we see that, by the Fundamental Theorem of Arithmetic,

$$
\begin{equation*}
q=q_{1} q_{2} \cdots q_{k} \tag{8}
\end{equation*}
$$

where $q_{1}, q_{2}, \ldots, q_{k}$ are prime different from $p_{1}, \ldots, p_{m}, 2$. Now recall that a prime number is either 2 or odd, and every odd number when divided by 4 the remainder is either 1 or 3 . Since by our assumption all the primes of the form $4 n+3$ are among p_{1}, \ldots, p_{m}, all the q_{i} 's must be of the form $4 n+1$. Thus there are $r_{1}, \ldots, r_{k} \in \mathbb{N}$ satisfying

$$
\begin{equation*}
q_{i}=4 r_{i}+1, \quad i=1,2, \ldots, k \tag{9}
\end{equation*}
$$

that is $q_{1}=4 r_{1}+1, q_{2}=4 r_{2}+1, \ldots, q_{k}=4 r_{k}+1$.
Substituting these into (8) we have

$$
\begin{equation*}
q=\left(4 r_{1}+1\right)\left(4 r_{2}+1\right) \cdots\left(4 r_{k}+1\right) . \tag{10}
\end{equation*}
$$

Expansion of the right hand side product has 2^{k} terms, each term is a product of k numbers, the first one chosen from $4 r_{1}$ and 1 , the second one from $4 r_{2}$ and $1, \ldots$, the k th one from $4 r_{k}$ and 1 . We see that unless 1 is chosen every time, the result would be divided by 4 . Therefore the remainder for $q \div 4$ would be $1 \times 1 \times 1 \times \cdots \times 1=1$.

Thus we have shown that the remainder of $q \div 4$ is at the same time 1 and 3 . Contradiction.

[^1]
[^0]: 1. Discuss n even/odd.
[^1]: 2. Consider $4 p_{1} \cdots p_{n}-1$.
