Math 117 Fall 2014 Homework 1

Due Thursday Sept. 11 3pm in Assignment Box

Question 1. (5 PTs) Prove that 11 is prime but 57 is not.
Question 2. (5 PTs) Let n be an arbitrary natural number. Prove that $4 \nmid\left(n^{2}+2\right)$. (Hint: ${ }^{1}$)
Question 3. (5 PTS) Given that there are infinitely many pairs of prime numbers with difference $<7 \times 10^{7}$. Prove that there is a natural number $d<7 \times 10^{7}$ such that there are infinitely many pairs of prime numbers with difference exactly d.

Question 4. (5 PTS) Prove that there are infinitely many primes of the form $4 n+3$ (that is when divided by 4 , the remainder is 3 . (Hint: ${ }^{2}$)

[^0]
[^0]: 1. Discuss n even/odd.
 2. Consider $4 p_{1} \cdots p_{n}-1$.
