Math 117 Fall 2014 Homework 1

Due Thursday Sept. 11 3pm in Assignment Box

QUESTION 1. (5 PTS) Prove that 11 is prime but 57 is not.

QUESTION 2. (5 PTS) Let n be an arbitrary natural number. Prove that $4 \not\mid (n^2 + 2)$. (Hint:\(^1\)

QUESTION 3. (5 PTS) Given that there are infinitely many pairs of prime numbers with difference $<7 \times 10^7$. Prove that there is a natural number $d < 7 \times 10^7$ such that there are infinitely many pairs of prime numbers with difference exactly d.

QUESTION 4. (5 PTS) Prove that there are infinitely many primes of the form 4n+3 (that is when divided by 4, the remainder is 3. (Hint:²)

^{1.} Discuss n even/odd.

^{2.} Consider $4 p_1 \cdots p_n - 1$.