
Math 117 Fall 2014 Lecture 2 (Sept. 4, 2014)

� Number systems:

� N= f1; 2; 3; :::g: Natural numbers;

� Z= f:::¡ 2;¡1; 0; 1; 2; :::g: Integers;

� Q: Rational numbers;

� R: Real numbers;

� C: Complex numbers;

� And many more.

� Relations between number systems: N�Z�Q�R�C.
�A�B� for two sets A;B (a set is a collection of objects) means every member of A (that

is every object in the collection A) is also a member of B. For example

f1; 2; 3g� f1; 2; 3; 4g�f1; 2; 3; 4;Obamag: (1)

� Natural numbers are in some sense di�erent � more �natural� than other number systems.

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.

� Leopold Kronecker 1839 - 1914.

� By the end of the 19th century, the whole analysis has been successfully �built� upon
arithmetics.1

� It is also possible to further �built� arithmetics on set theory. For example, John von
Neumann de�ned the natural numbers successively as

0 :=?; 1 := f?g; 2 := f?; f?gg; 3 := f?; f?g; f?; f?ggg; ::: (2)

Another interesting development in this direction is J. H. Conway (inventor of �Game
of Life�)'s theory of surreal numbers, for which a lively introduction is the book
Surreal Numbers: How to ex-students turned on to pure mathematics and found total
happiness, by Donald E. Knuth.2

� However the e�ort of using set theory as foundation of the whole analysis (or whole
mathematics) �nally failed, one reason being the �Incompleteness Theorem� proved
by Kurt Gödel in the 1930s.

� From now on we accept N as it is and will not make any e�ort to de�ne it.

� Prime and composite numbers:

� A prime number is a natural number greater than 1 that has no positive divisors other
than 1 and itself.

Example 1. Prove that 7 is prime.

1. The bookDi�erential and Integral Calculus by Edmund Landau, written in 1928(?), summarized this success. Youmay
want to take a look to see what things look like.

2. Author of the multi-volume classic The Art of Computer Programming.



Proof. First observe that any number bigger than 7 cannot be its divisor. Therefore
the claim is proved as soon as we have shown that the only divisors of 7 in 1; 2; :::; 7
are 1 and 7. We check

1j 7; 2j 7; 3j 7; 4j 7; 5j 7; 6j 7; 7j 7: (3)

Thus the proof ends. �

Notation. Here aj b means a is a divisor of b while aj b means a is not a divisor of b.

� A composite number is a natural number greater than 1 that is not prime.

Note. Equivalently, a composite number is a natural number great than 1 and has
at least one divisor other than 1 and itself.

Example 2. Prove that 6 is composite.

Proof. We have 2j 6. Since 2=/ 1; 2=/ 6, by de�nition 6 is composite. �

� We state but not prove the following fact:

Any composite number has at least one prime divisor.

In other words, if n is composite, then there is a prime p such that pjn.

Theorem 3. There are in�nitely many primes.

Note. There are two possible strategies to prove this:

1. Assuming that the primes are �nite leads to contradiction; If our arguments are all
solid, then the cause of the contradiction must be the assumption, which then must
be false. This is proof by contradiction.

2. No matter how many primes we have, we can always �nd one more. This is proof by
construction (we �construct� one more prime).

Proof. (by contradiction) Assume the contrary. There we can list the �nitely many
primes as p1; p2; ::::; pn. Now consider the number q := p1���pn+ 1 (p1���pn is shorthand for
p1� p2� ��� � pn, the product of all these n primes). Since q > p1; p2; :::; pn, it cannot be in
the list and therefore by our assumption cannot be prime. Therefore it is composite. But
then there is a prime number dividing q. We show that this is not possible and thus reaching
contradiction.

This prime number cannot be p1. Since q� p1= p2���pn::::1 (with remainder 1, just like
7� 3=2::::1). Similarly it cannot be p2 or p3 or p4 or :::: or pn. But we have assumed there
are no other primes than p1; p2; :::; pn. Contradiction. �

Proof. (by construction) This is essentially the same proof. Except that we take any
prime divisor of q as the �one more� prime. �

Exercise 1. Fill in the details for the proof by construction.

� People have been looking for formulas that generate primes without success.

Example 4. Pierre de Fermat (1601 - 1665), the �greatest amateur mathematician
ever� proposed the formula f(n) := 22

n
+ 1 and checked that f(1); :::; f(4) are all

primes. However Leonhard Euler showed in 1732 that f(5)= 641� 6700417.



Exercise 2. Prove that f(n) :=n2¡n+ 41 is also not a �prime generating formula�. (Hint:3 )

� One of the most important result is the following �Prime Number Theorem�, proved
by Hadamard and de la Vallee-Poussin (independently) in 1896:

Theorem 5. Let P (N) denote the number of primes in 1; 2; :::; N, then

lim
N!1

P (N)
N

= lnN: (4)

Here ln is the natural logarithm (base e).

The proof is a result of applying calculus to number theory.

� The two major open problems regarding primes are

¡ Twin Prime Conjecture: There are in�nitely many pairs of �twin primes�. Here
a pair of �twin prime� is a pair of natural numbers (p; q) such that q¡ p=2.

� Major progress has been made last year on this problem. Yitang Zhang
proved last year that there are in�nitely many pairs of primes with
di�erence less than seventy million (<7�107). See the video Twin prime
conjecture from Numberphile: http://youtu.be/vkMXdShDdtY.

Exercise 3. Given that there are in�nitely many pairs of prime numbers with di�erence
<7� 107. Prove that there is a natural number d<7� 107 such that there are in�nitely
many pairs of prime numbers with di�erence exactly d.

¡ Goldbach's Conjecture: Every even number greater or equal to 4 is the sum of
two prime numbers.

� The best result up to now is the one obtained by Jingrun Chen in 1960s:
Every even number greater or equal to 4 is the sum of two numbers,
one of which is prime, the other the product of two primes.

� Goldbach's Weak Conjecture � Every odd number greater or equal to
7 is the sum of three prime numbers � was proved last year by Harold
Helfgott.

Exercise 4. Explain why Goldbach's weak conjecture is indeed weaker than Goldbach's
conjecture. (Claim A is �weaker� than claim B if the following hold: if B is true than A
is true; But if A is true B is not necessarily true.)

The proofs are all applications of calculus to number theory.

� Fundamental Theorem of Arithmetic. Also called �unique factorization theorem�.

Theorem 6. Every natural number greater than 1 either is prime or is a product of primes.
Furthermore, this factorization is unique: the order of the primes is arbitrary, but the primes
themselves are not.

Example 7. The only factorization of 12 is 2 � 2 � 3. The only change one can make is
changing the order of 2; 2; 3.

Corollary 8. Every natural number n greater than 1 has a unique representation as

n= p1
a1p2

a2:::pk
ak (5)

3. There is no need to calculate f(1); f(2); ::: one by one. Notice f(n) = (n¡ 1)n+ 41.



where p1; :::; pk are primes and a1; :::; ak are natural numbers.

Example 9. 12=22 � 3.

Notation. Since � and x are hard to tell apart, often � or simple a small space is used to
denote multiplication. Thus 22 � 3 means 22� 3.

Proof. (of the Fundamental Theorem) We will prove only the second half, the
uniqueness part, as the �rst half requires some set up which totally belongs to a number
theory course.

Assume the contrary. Thus there are natural numbers enjoying two different
factorizations into primes. Let m be the smallest such number.

Exercise 5. Why is this possible? Why can we pick such a �smallest� number?

Then

m= p1���pr= q1���qs (6)

where p1; :::; pr; q1; :::qs are primes. Since the order is arbitrary, we can assume p16 p26 ���6
pr; q16 q26 ���6 qs.

Exercise 6. Why is this possible?

We claim that p1=/ q1. Assume otherwise. Then we de�ne m0= p2���pr and there holds

m0= p2���pr= q2���qs (7)

contradicting the fact that m is the smallest such number.
Therefore either p1> q1 or p1< q1. We prove the p1< q1 case and leave the other one as

exercise.
De�ne

m00 :=m¡ p1 q2���qs: (8)

Then we have

m00= p1 (p2���pr¡ q2���qs) (9)

and also

m00=(q1¡ p1) q2���qs: (10)

Since m00<m, it has only one prime factorization. Thus one of the following must be true:

p1j (q1¡ p1); p1= q2; p1= q3; ::: p1= qs: (11)

If p1j (q1¡ p1) then p1j q1 which contradicts the fact that q1 is prime. None of the other s¡1
equalities could hold because p1< q16 q26 ���6 qs.

Thus we have reached contradiction and the proof ends. �

Exercise 7. Prove the case q1< p1.

One important consequence of the Fundamental Theorem of Arithmetic is the following:

Let a; b be natural numbers and let p be prime. If pj (a b) then either pj a
or pj b.

Exercise 8. Let a; b; c be natural numbers. Prove or disprove: If cj (a b) then either cj a or cj b.

� If you have some number theory background, you may want to read this: Scott Aaronson The
Prime Facts: From Euclid to AKS. http://www.scottaaronson.com/writings/prime.pdf.



� Another interesting article from Scott Aaronson is Who Can Name the Bigger Number?
about whether it is possible to name the biggest natural number. The answer may surprise
you. http://www.scottaaronson.com/writings/bignumbers.html.


	Math 117 Fall 2014 Lecture 2 (Sept. 4, 2014)

