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Natural Question

Suppose (X ,C ) and (Y ,K ) are partially ordered vector spaces and

f : X → Y

is an order isomorphism, meaning that f is bijective and satisfies

x ≥ y ⇐⇒ f (x) ≥ f (y), ∀x , y ∈ X .

Is f necessarily an affine linear map?

Examples of nonlinear order isomorphism

On R the map f (x) = x3 is an order isomorphism.

On C ([0, 1]) with pointwise order the map

f (g(x)) = g(x)3

for all g ∈ C ([0, 1]) and x ∈ [0, 1].
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Background

In 1977, W. Noll and J.J Schäffer gave sufficient conditions on the
space to answer the question in the positive.

More recently, in 2011, S. Arstein-Avidan, B.A. Slomka fully
characterized order isomorphisms on finite dimensional spaces.
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Extreme Rays

Definition

A vector r ∈ C is called an extreme vector (or atom) if for all v ∈ C with
v ≤ r there exists a λ ∈ R such that v = λr .

We denote the set of all extreme vectors of C by ext(C ).

An extreme ray in the direction of r ∈ ext(C ) with apex x ∈ X is
defined as x + R+r .

Remark that for r ∈ ext(C ) the interval [0, r ] is totally ordered.
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Extreme Rays

Definition

A vector r ∈ C is called an extreme vector (or atom) if for all v ∈ C with
v ≤ r there exists a λ ∈ R such that v = λr .

Theorem

Suppose (X ,C ) is Archimedean and let x ∈ X . A subset H ⊆ X is an
extreme ray with apex x if and only if it is maximal among subsets
G ⊆ {x}u that satisfy:

(i) G is directed, i.e., for all y , z ∈ G there exists an w ∈ G such that
w ≥ y , z .

(ii) For any y , z ∈ G the order interval [y , z ] is totally ordered.

(iii) G contains two distinct points.
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extreme ray with apex x if and only if it is maximal among subsets
G ⊆ {x}u that satisfy:

(i) G is directed, i.e., for all y , z ∈ G there exists an w ∈ G such that
w ≥ y , z .

(ii) For any y , z ∈ G the order interval [y , z ] is totally ordered.

(iii) G contains two distinct points.

We conclude that f maps an extreme ray with apex x ∈ X onto an
extreme ray in Y with apex f (x).
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Additivity Along Extreme Rays

Our first step towards showing that f is additive is to show that for
all x ∈ X and r , s ∈ ext(C ) we have

f (x + r + s)− f (x + s) = f (x + r)− f (x).

It suffices to show that f (x), f (x + r), f (x + s) and f (x + r + s) are
the corners of a parallelogram.

Corresponding to f there exists a bijection ϕ : EC → EK , where EC

and EK denote the collections of extreme rays of C and K ,
respectively, such that

f (x + R) = f (x) + ϕ(R), x ∈ X , R ∈ EC .
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Intermezzo: Domain of Order Isomorphism

Remark that for previous argument the domain of our order
isomorphism must contain all extreme rays that start in it.

A set U ⊆ X is called an upper set if it satisfies U = Uu.

Important examples of upper sets are X , C and C ◦.
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Diagonal Form of Order Isomorphisms

Theorem

Suppose (X ,C ) is Archimedean. For any collection of extreme vectors
(vα)α∈I there exist increasing and bijective fα : R→ R such that for any
x ∈ X and v =

∑n
i=1 λivαi (with (x + v) ∈ U) we have

f (x + v) = f (x) +
n∑

i=1

fαi (λi )τ(x , vαi ),

where τ(x , vαi ) := f (x + vαi )− f (x) ∈ ϕ(R+vαi ).

In the case that f : C → K , we get f (v) =
∑n

i=1 fαi (λi )f (vαi ).
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Obtaining Homogeneity

We characterized order isomorphisms on the linear span of the
extreme rays.

When does this diagonal form imply that the order isomorphism is
affine linear?

τ(x , vα) needs to be constant in its first argument and all fα need to
be equal to the identity on R.
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Engaged Extreme Rays

Definition

Suppose R is a collection of rays (with apex 0). A ray R ∈ R is called
engaged if R ⊆ span(R\{R}) holds and is called disengaged otherwise.

Let CE denote the cone spanned by the engaged extreme rays of C
and XE := CE − CE .

All extreme rays of CE are engaged.

We apply the diagonal form of order isomorphisms to a collection of
engaged extreme vectors.

Conclusion: f is affine linear on the linear subspace spanned by the
engaged extreme rays.
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Extension of Linearity

For a ∈ X and A ⊆ X we have a = sup(A) if and only if
f (a) = sup(f (A)).

We can show that f is affine linear on the supremum closure of XE .

Moreover, f is affine linear on the supremum closure of the infimum
closure of XE .
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Application

Consider X = B(H)sa equipped with A ≥ B :⇔ 〈Ax , x〉 ≥ 〈Bx , x〉 for
all x ∈ H.

Extreme vectors are exactly the rank-1 projections.

All extreme rays are engaged.

Y := {A ∈ B(H)sa : A has finite rank} is the linear span of the
engaged extreme rays.

The identity operator can be written as the supremum of all rank-1
projections.

Using linear order isomorphism TA(B) := A−
1
2BA−

1
2 we can show that

any invertible A ∈ B(H)+
sa is contained in the supremum closure of Y .

Lastly, we use that A + λI is invertible and positive for some λ.
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