Automatic Linearity of Order Isomorphisms

Hent van Imhoff Joint work with: Onno van Gaans and Bas Lemmens

Leiden University

July 18, 2017

H. van Imhoff (Leiden University) Automatic Linearity of Order Isomorphism

Natural Question

Suppose (X, C) and (Y, K) are partially ordered vector spaces and

 $f:X \to Y$

is an order isomorphism, meaning that f is bijective and satisfies

$$x \ge y \iff f(x) \ge f(y), \ \forall x, y \in X.$$

Natural Question

Suppose (X, C) and (Y, K) are partially ordered vector spaces and

 $f:X \to Y$

is an order isomorphism, meaning that f is bijective and satisfies

$$x \ge y \Longleftrightarrow f(x) \ge f(y), \ \forall x, y \in X.$$

Is f necessarily an affine linear map?

Suppose (X, C) and (Y, K) are partially ordered vector spaces and

 $f:X \to Y$

is an order isomorphism, meaning that f is bijective and satisfies

$$x \ge y \Longleftrightarrow f(x) \ge f(y), \ \forall x, y \in X.$$

Is f necessarily an affine linear map?

Examples of nonlinear order isomorphism

• On \mathbb{R} the map $f(x) = x^3$ is an order isomorphism.

Suppose (X, C) and (Y, K) are partially ordered vector spaces and

 $f:X \to Y$

is an order isomorphism, meaning that f is bijective and satisfies

$$x \ge y \Longleftrightarrow f(x) \ge f(y), \ \forall x, y \in X.$$

Is f necessarily an affine linear map?

Examples of nonlinear order isomorphism

• On \mathbb{R} the map $f(x) = x^3$ is an order isomorphism.

• On C([0,1]) with pointwise order the map

$$f(g(x)) = g(x)^3$$

for all $g \in C([0,1])$ and $x \in [0,1]$.

• In 1977, W. Noll and J.J Schäffer gave sufficient conditions on the space to answer the question in the positive.

- In 1977, W. Noll and J.J Schäffer gave sufficient conditions on the space to answer the question in the positive.
- More recently, in 2011, S. Arstein-Avidan, B.A. Slomka fully characterized order isomorphisms on finite dimensional spaces.

A vector $r \in C$ is called an *extreme vector* (or *atom*) if for all $v \in C$ with $v \leq r$ there exists a $\lambda \in \mathbb{R}$ such that $v = \lambda r$.

• We denote the set of all extreme vectors of C by ext(C).

A vector $r \in C$ is called an *extreme vector* (or *atom*) if for all $v \in C$ with $v \leq r$ there exists a $\lambda \in \mathbb{R}$ such that $v = \lambda r$.

- We denote the set of all extreme vectors of *C* by ext(*C*).
- An extreme ray in the direction of r ∈ ext(C) with apex x ∈ X is defined as x + ℝ⁺r.

A vector $r \in C$ is called an *extreme vector* (or *atom*) if for all $v \in C$ with $v \leq r$ there exists a $\lambda \in \mathbb{R}$ such that $v = \lambda r$.

- We denote the set of all extreme vectors of *C* by ext(*C*).
- An extreme ray in the direction of r ∈ ext(C) with apex x ∈ X is defined as x + ℝ⁺r.
- Remark that for $r \in ext(C)$ the interval [0, r] is totally ordered.

A vector $r \in C$ is called an *extreme vector* (or *atom*) if for all $v \in C$ with $v \leq r$ there exists a $\lambda \in \mathbb{R}$ such that $v = \lambda r$.

Theorem

Suppose (X, C) is Archimedean and let $x \in X$. A subset $H \subseteq X$ is an extreme ray with apex x if and only if it is maximal among subsets $G \subseteq \{x\}^u$ that satisfy:

- (i) G is directed, i.e., for all $y, z \in G$ there exists an $w \in G$ such that $w \ge y, z$.
- (ii) For any $y, z \in G$ the order interval [y, z] is totally ordered.
- (iii) G contains two distinct points.

Theorem

Suppose (X, C) is Archimedean and let $x \in X$. A subset $H \subseteq X$ is an extreme ray with apex x if and only if it is maximal among subsets $G \subseteq \{x\}^u$ that satisfy:

- (i) G is directed, i.e., for all $y, z \in G$ there exists an $w \in G$ such that $w \ge y, z$.
- (ii) For any $y, z \in G$ the order interval [y, z] is totally ordered.

(iii) G contains two distinct points.

We conclude that f maps an extreme ray with apex $x \in X$ onto an extreme ray in Y with apex f(x).

Additivity Along Extreme Rays

 Our first step towards showing that *f* is additive is to show that for all *x* ∈ *X* and *r*, *s* ∈ ext(*C*) we have

$$f(x+r+s)-f(x+s)=f(x+r)-f(x).$$

Additivity Along Extreme Rays

 Our first step towards showing that *f* is additive is to show that for all *x* ∈ *X* and *r*, *s* ∈ ext(*C*) we have

$$f(x + r + s) - f(x + s) = f(x + r) - f(x).$$

• It suffices to show that f(x), f(x + r), f(x + s) and f(x + r + s) are the corners of a parallelogram.

Additivity Along Extreme Rays

 Our first step towards showing that *f* is additive is to show that for all *x* ∈ *X* and *r*, *s* ∈ ext(*C*) we have

$$f(x + r + s) - f(x + s) = f(x + r) - f(x).$$

- It suffices to show that f(x), f(x + r), f(x + s) and f(x + r + s) are the corners of a parallelogram.
- Corresponding to f there exists a bijection $\varphi : E_C \to E_K$, where E_C and E_K denote the collections of extreme rays of C and K, respectively, such that

$$f(x+R) = f(x) + \varphi(R), \qquad x \in X, \ R \in E_C.$$

• Remark that for previous argument the domain of our order isomorphism must contain all extreme rays that start in it.

- Remark that for previous argument the domain of our order isomorphism must contain all extreme rays that start in it.
- A set $U \subseteq X$ is called an upper set if it satisfies $U = U^u$.

- Remark that for previous argument the domain of our order isomorphism must contain all extreme rays that start in it.
- A set $U \subseteq X$ is called an upper set if it satisfies $U = U^u$.
- Important examples of upper sets are X, C and C° .

Theorem

Suppose (X, C) is Archimedean. For any collection of extreme vectors $(v_{\alpha})_{\alpha \in I}$ there exist increasing and bijective $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ such that for any $x \in X$ and $v = \sum_{i=1}^{n} \lambda_i v_{\alpha_i}$ (with $(x + v) \in U$) we have

$$f(x+v) = f(x) + \sum_{i=1}^{n} f_{\alpha_i}(\lambda_i)\tau(x, v_{\alpha_i}),$$

where $\tau(x, v_{\alpha_i}) := f(x + v_{\alpha_i}) - f(x) \in \varphi(\mathbb{R}^+ v_{\alpha_i}).$

Theorem

Suppose (X, C) is Archimedean. For any collection of extreme vectors $(v_{\alpha})_{\alpha \in I}$ there exist increasing and bijective $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ such that for any $x \in X$ and $v = \sum_{i=1}^{n} \lambda_i v_{\alpha_i}$ (with $(x + v) \in U$) we have

$$f(x+v) = f(x) + \sum_{i=1}^{n} f_{\alpha_i}(\lambda_i) \tau(x, v_{\alpha_i}),$$

where $\tau(x, v_{\alpha_i}) := f(x + v_{\alpha_i}) - f(x) \in \varphi(\mathbb{R}^+ v_{\alpha_i}).$

In the case that $f: C \to K$, we get $f(v) = \sum_{i=1}^n f_{\alpha_i}(\lambda_i) f(v_{\alpha_i})$.

• We characterized order isomorphisms on the linear span of the extreme rays.

- We characterized order isomorphisms on the linear span of the extreme rays.
- When does this diagonal form imply that the order isomorphism is affine linear?

- We characterized order isomorphisms on the linear span of the extreme rays.
- When does this diagonal form imply that the order isomorphism is affine linear?
- τ(x, v_α) needs to be constant in its first argument and all f_α need to be equal to the identity on ℝ.

Suppose \mathcal{R} is a collection of rays (with apex 0). A ray $R \in \mathcal{R}$ is called *engaged* if $R \subseteq \text{span}(\mathcal{R} \setminus \{R\})$ holds and is called *disengaged* otherwise.

• Let C_E denote the cone spanned by the engaged extreme rays of C and $X_E := C_E - C_E$.

- Let C_E denote the cone spanned by the engaged extreme rays of C and X_E := C_E - C_E.
- All extreme rays of C_E are engaged.

- Let C_E denote the cone spanned by the engaged extreme rays of C and $X_E := C_E C_E$.
- All extreme rays of C_E are engaged.
- We apply the diagonal form of order isomorphisms to a collection of engaged extreme vectors.

- Let C_E denote the cone spanned by the engaged extreme rays of C and $X_E := C_E C_E$.
- All extreme rays of C_E are engaged.
- We apply the diagonal form of order isomorphisms to a collection of engaged extreme vectors.
- **Conclusion**: *f* is affine linear on the linear subspace spanned by the engaged extreme rays.

• For $a \in X$ and $A \subseteq X$ we have $a = \sup(A)$ if and only if $f(a) = \sup(f(A))$.

- For $a \in X$ and $A \subseteq X$ we have $a = \sup(A)$ if and only if $f(a) = \sup(f(A))$.
- We can show that f is affine linear on the supremum closure of X_E .

- For $a \in X$ and $A \subseteq X$ we have $a = \sup(A)$ if and only if $f(a) = \sup(f(A))$.
- We can show that f is affine linear on the supremum closure of X_E .
- Moreover, f is affine linear on the supremum closure of the infimum closure of X_E .

• Consider $X = B(H)_{sa}$ equipped with $A \ge B : \Leftrightarrow \langle Ax, x \rangle \ge \langle Bx, x \rangle$ for all $x \in H$.

э

Image: A math and A math and

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.
- All extreme rays are engaged.

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.
- All extreme rays are engaged.
- Y := {A ∈ B(H)_{sa} : A has finite rank} is the linear span of the engaged extreme rays.

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.
- All extreme rays are engaged.
- Y := {A ∈ B(H)_{sa} : A has finite rank} is the linear span of the engaged extreme rays.
- The identity operator can be written as the supremum of all rank-1 projections.

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.
- All extreme rays are engaged.
- Y := {A ∈ B(H)_{sa} : A has finite rank} is the linear span of the engaged extreme rays.
- The identity operator can be written as the supremum of all rank-1 projections.
- Using linear order isomorphism T_A(B) := A^{-¹/₂} BA^{-¹/₂} we can show that any invertible A ∈ B(H)⁺_{sa} is contained in the supremum closure of Y.

- Consider X = B(H)_{sa} equipped with A ≥ B :⇔ ⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H.
- Extreme vectors are exactly the rank-1 projections.
- All extreme rays are engaged.
- Y := {A ∈ B(H)_{sa} : A has finite rank} is the linear span of the engaged extreme rays.
- The identity operator can be written as the supremum of all rank-1 projections.
- Using linear order isomorphism T_A(B) := A^{-¹/₂} BA^{-¹/₂} we can show that any invertible A ∈ B(H)⁺_{sa} is contained in the supremum closure of Y.
- Lastly, we use that $A + \lambda I$ is invertible and positive for some λ .