Disintegration of positive isometric group representations on  $L^p$ -spaces

# Marcel de Jeu Leiden University and University of Mississippi

Positivity IX Edmonton 17 July 2017



Joint work with Jan Rozendaal Positivity **21** (2017), 673–710

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

# Overview

- Introduction: representations of groups and disintegration into indecomposable representations
- L<sup>p</sup>-context: ergodic decomposition and relation with order indecomposable representations
- Direct integrals of Banach lattices
- Disintegration of group actions on L<sup>p</sup>-spaces: spatial case
- Disintegration of group actions on L<sup>p</sup>-spaces: general case

#### Disclaimer: not the final answer for all positive isometric actions

- Measures will be finite
- Group actions will leave the constants fixed

1 
$$\leq$$
 p  $< \infty$ 

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

UNITARY REPRESENTATIONS ON HILBERT SPACES

## Unitary group representation of a locally compact group G

- Is a homomorphism  $\rho: G \mapsto U(H)$  into the unitary group of a Hilbert space
- Tacitly always assumed that g → ρ(g)x is continuous for all x ∈ H (representation is strongly continuous)

#### Building new representations from given ones

- If  $\rho_1$ ,  $\rho_2$  are two unitary representations on  $H_1$  and  $H_2$ , then  $\rho_1 \oplus \rho_2 : G \to U(H_1 \oplus H_2)$  is another one, and  $H_1$  and  $H_2$  are closed invariant subspaces
- Elementary building blocks: a unitary representation on H is *indecomposable* (equivalently: irreducible) if every decomposition H = H<sub>1</sub> ⊕ H<sub>2</sub> into closed invariant subspaces is trivial, i.e. if H<sub>1</sub> = {0} or H<sub>1</sub> = H

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

UNITARY REPRESENTATIONS ON HILBERT SPACES

# Disintegration of $\rho: G \rightarrow U(H)$ as a direct integral

If G and H are separable, there exist a space X, a measure  $\mu$  on X, families of Hilbert spaces  $(H_x)_{x \in X}$  and unitary representations  $(\rho_x)_{x \in X}$  of G on  $H_x$  such that

•  $(\rho, H)$  and  $(\int_X^{\oplus} \rho_x d\mu(x), \int_X^{\oplus} H_x d\mu(x))$  are unitarily equivalent

•  $\mu$ -almost  $\rho_x$  are indecomposable

# Idea

•  $\int_X^{\oplus} H_x d\mu(x)$  consists of 'all' maps  $s : X \to \bigsqcup_{x \in X} H_x$  such that  $s(x) \in H_x$  for all x and such that

$$\int_X \|s(x)\|_{H_x}^2 \,\mathrm{d}\mu(x) < \infty$$

•  $\int_X^{\oplus} \rho_x d\mu(x)$  acts pointwise ('in each fibre')

Direct integral

Disintegration: spatial case

Disintegration: general case 0000

UNITARY REPRESENTATIONS ON HILBERT SPACES

# Direct integrals of unitary representations

- Finite Hilbert sums are direct integrals for a counting measure
- In general: cannot vary s(x) freely with x as for finite direct sum:
  - Need to stay square integrable
  - Measurability conditions must be met

## Unitary moral in separable case

- Every unitary representation on H is built from indecomposable ones
- Equivalently: every representation as automorphisms of H is built from indecomposable ones
- Glueing formalism is that of a direct integral
- The  $H_x$  are (can be taken to be) a subspace of  $\ell^2$

Introduction Ergodic dec 0000000 00000000

odic decompositio

Direct integral

Disintegration: spatial case

Disintegration: general case 0000

POSITIVE REPRESENTATIONS ON BANACH LATTICES

# Question

- What about representations of G as automorphisms of a Banach lattice E?
- Equivalently: what about homomorphisms  $\rho : G \to B(E)$  such that every  $\rho(g)$  is an isometric lattice automorphism of E?
- Still equivalently: what about *representations of G as positive isometries of E*?
- Can they be disintegrated into 'indecomposable' ones?

## Expectation management

- Unitary theory works well for representations in one space:  $\ell^2$
- Great variety of Banach lattices
- Can't expect to cover everything; need to find 'the right class'

| Introduction                                | Ergodic decomposition | Direct integrals | Disintegration: spatial case | Disintegration: general case |  |
|---------------------------------------------|-----------------------|------------------|------------------------------|------------------------------|--|
| POSITIVE REPRESENTATIONS ON BANACH LATTICES |                       |                  |                              |                              |  |

# Indecomposability for positive representation on Banach lattice E

- If E = E<sub>1</sub> ⊕ E<sub>2</sub> is an order direct sum of two Banach sublattices, then E<sub>1</sub> and E<sub>2</sub> are, in fact, projection bands and each other's disjoint complement
- So: a positive representation of G on E is order indecomposable if {0} and E are the only invariant projection bands

## Testing ground for disintegration issues: L<sup>p</sup>-spaces

- Ubiquity of examples
- Good description of projection bands

| Introduction<br>○○○○○●○ | Ergodic decomposition | Direct integrals<br>000000 | Disintegration: spatial case | Disintegration: general case |  |
|-------------------------|-----------------------|----------------------------|------------------------------|------------------------------|--|
| L <sup>p</sup> -SPACES  |                       |                            |                              |                              |  |

#### Large class of examples

Whenever G acts on a space X that carries an invariant measure  $\mu$ , there is a natural action of G on  $L^{p}(X, \mu)$ , given by

$$[\rho(g)]f(x) := f(g^{-1} \cdot x)$$

Note:

- $\rho$  is a representation of G as positive isometries of the Banach lattice  $L^p(X, \mu)$
- If  $\mu$  is finite: G leaves the constant function  $\mathbf{1} \in \mathrm{L}^p(X,\mu)$  fixed



# Can show (goal of the lecture)

If G is a locally compact Polish group, if  $1 \le p < \infty$ , if  $\mu$  is a probability measure on a set X such that  $L^p(X, \mu)$  is separable, and if  $\rho : G \to B(L^p(X, \mu))$  is a strongly continuous representation as positive isometries leaving the constants fixed, then  $\rho$  can be disintegrated into order indecomposable positive isometric representations of G on Banach lattices.

## Remarks

- Disintegration uses L<sup>p</sup>-direct integral of Banach spaces
- G does not necessarily act on X
- Need to cover that case first, though
- Polish: (homeomorphic to) separable complete metric space
- All second countable locally compact Hausdorff spaces (hence all Lie groups) are Polish

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

#### WHY WE CAN TACKLE THIS CASE

## Key observation: link with ergodic decomposition

- Suppose the abstract group G acts as measurable transformation on (X, μ) with μ finite
- Projection bands: all f ∈ L<sup>p</sup>(X, µ) vanishing a.e. on a given measurable subset
- Invariant projection bands: all  $f \in L^p(X, \mu)$  vanishing a.e. on a given essentially invariant measurable subset
- So: natural representation ρ of G on L<sup>p</sup>(X, μ) is order indecomposable ⇔ only trivial invariant projection bands ⇔ only trivial essentially invariant measurable subsets ⇔ μ is ergodic

## Hope

Ergodic decomposition of  $\mu$  will 'somehow' give decomposition of  $\rho$  into order indecomposable representations

Ergodic decomposition

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

EXPLOIT ERGODIC DECOMPOSITION-HOW, EXACTLY?

## Context for the moment

Abstract G acts on X with invariant probability measure  $\mu$ 

## First attempt

- Take an ergodic measure  $\lambda$
- For  $f \in \mathrm{L}^p(X,\mu)$ , consider f as an element of  $\mathrm{L}^p(X,\lambda)$
- Glue all these new elements together as \u03c6 ranges over de ergodic measures

#### Problems with first attempt

- Not clear how to glue (but see later)
- f need not be in  $L^p(X, \lambda)$
- Map need not even be well-defined

| Introduction | Ergodic decomposition                                                                               | Direct integrals<br>000000 | Disintegration: spatial case | Disintegration: general |  |  |
|--------------|-----------------------------------------------------------------------------------------------------|----------------------------|------------------------------|-------------------------|--|--|
|              |                                                                                                     | TOY EXAMP                  | LE: T ACTS ON D              |                         |  |  |
|              |                                                                                                     |                            |                              |                         |  |  |
| То           | / example                                                                                           |                            |                              |                         |  |  |
|              |                                                                                                     |                            |                              |                         |  |  |
|              | $lacksquare$ The unit circle ${\mathbb T}$ acts on the closed unit disk ${\mathbb D}$ via rotations |                            |                              |                         |  |  |
|              | Invariant probability measure $\mu$ : normalised Lebesgue measure                                   |                            |                              |                         |  |  |
|              | Ergodic measure                                                                                     | s: rotation ir             | variant probability          | measures $\lambda_r$    |  |  |
|              | on the orbits $r\mathbb{T}$                                                                         | (circles with              | radius $r \in [0, 1]$ ), v   | viewed as               |  |  |
|              | measures on $\mathbb D$                                                                             |                            | L / J/                       |                         |  |  |

# Problems with first attempt (here: 'restriction to circles')

- If  $f \in L^{p}(\mathbb{D}, \mu)$ , and  $r \in [0, 1]$ , then f need not be in  $L^{p}(\mathbb{D}, \lambda_{r})$ : easy examples with function vanishing off  $r\mathbb{T}$
- If f and g represent the same element of L<sup>p</sup>(D, μ), and r ∈ [0, 1], then their 'interpretations' in L<sup>p</sup>(D, λ<sub>r</sub>) need not coincide: same type of example

| Introduction<br>0000000     | Ergodic decomposition | Direct integrals<br>000000 | Disintegration: spatial case | Disintegration: general case |  |
|-----------------------------|-----------------------|----------------------------|------------------------------|------------------------------|--|
| WAY OUT IN SUITABLE CONTEXT |                       |                            |                              |                              |  |

# Outline of solution: measure on the ergodic measures and precision

- Introduce a probability measure  $\nu$  on the set of ergodic measures  $\mathcal E$
- If  $f \in \mathcal{L}^{p}(X, \mu)$ , i.e. if f is p-integrable with respect  $\mu$ , then  $f \in \mathcal{L}^{p}(X, \lambda)$  for  $\nu$ -almost all  $\lambda$  in  $\mathcal{E}$
- If [f]<sub>μ</sub> = [g]<sub>μ</sub> in L<sup>p</sup>(X, μ), and if we define [f]<sub>λ</sub> = [0]<sub>λ</sub> for the exceptional λ ∈ 𝔅 (and naturally otherwise), and likewise for g, then [f]<sub>λ</sub> = [g]<sub>λ</sub> for ν-almost λ ∈ 𝔅
- So: get a map from L<sup>p</sup>(X, μ) to ν-almost everywhere equivalence classes of sections

$$S: \mathrm{L}^p(X,\mu) \to \bigsqcup_{\lambda \in \mathcal{E}} \mathrm{L}^p(X,\lambda)$$

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

#### FIXED SUITABLE CONTEXT TO MAKE IT WORK

# For the time being

- G is a locally compact Polish group
- X is a Polish space
- G acts on X (simultaneous continuity in both variables)
- $\mu$  is an invariant Borel probability measure on X
- *E* is the (non-empty) set of ergodic Borel probability measures on *X*
- ${\mathcal E}$  is supplied with the induced weak\*-topology from  ${
  m C}_{
  m b}(X)^*$

# Be careful

- Need to keep distinction between f,  $[f]_{\mu}$ , and  $[f]_{\lambda}$  for  $\lambda \in \mathcal{E}$
- Measures are not necessarily complete
- Measurability is an issue to keep track of

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

ERGODIC DECOMPOSITION THEOREM FROM THE EARLY SIXTIES

# Theorem (Farrell, Varadarajan)

In our Polish context (G, X), there exists a Borel measurable map  $\beta : X \to \mathcal{E}$ ,  $x \mapsto \beta_x$ , such that, for all invariant  $\mu$ :

- 1  $\beta_{g_X} = \beta_x$  for all  $x \in X$  and  $g \in G$ ;
- 2  $\lambda(\beta^{-1}(\{\lambda\})) = 1$  for all  $\lambda \in \mathcal{E}$ ;
- **3** For all Borel subsets Y of X,

$$\mu(Y) = \int_X \beta_x(Y) \,\mathrm{d}\mu(x).$$

#### Remarks

- Parts 1 and 2: 'ergodic measures live on union of orbits'
- If G is compact: the ergodic measures are the push-forwards of the Haar measure to the orbits, using any point on them
- G compact, X locally compact: Seda and Wickstead (1976)

Introduction Ergodic decomposition Direct integrals Disintegration: spatial case Disintegration: general case 0000000 000 000 000 000 000 PUT MEASURE ON THE ERGODIC MEASURES

#### Prepare to interpret the equation: introduce measure $\nu$ on $\mathcal{E}$

Recall: for all Borel subsets Y of X,

$$\mu(\mathbf{Y}) = \int_{\mathbf{X}} \beta_x(\mathbf{Y}) \, \mathrm{d}\mu(\mathbf{x})$$

- A bit nondescriptive
- Becomes more transparent (and general!) by pushing μ forward to *ε* via β:

$$\nu(A) \coloneqq \mu(\beta^{-1}(A))$$

for Borel subsets A of  $\mathcal{E}$ 

- Now we have a Borel probability measure  $\nu$  on  $\mathcal E$
- $\nu$  does not depend on the choice for  $\beta$

Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

#### TONELLI AND FUBINI

# Theorem (—, Rozendaal (?))

In our Polish context (G, X), with invariant  $\mu$  on X and push-forward  $\nu$  of  $\mu$  via  $\beta$  to  $\mathcal{E}$ , we have the following:

■ If  $f : X \to [0, \infty]$  is Borel measurable, then the extended function  $\lambda \mapsto \int_X f(x) d\lambda(x)$ , with values in  $[0, \infty]$ , is Borel measurable on  $\mathcal{E}$ . In  $[0, \infty]$ , we have

$$\int_X f(x) \, \mathrm{d}\mu(x) = \int_{\mathcal{E}} \left( \int_X f(x) \, \mathrm{d}\lambda(x) \right) \, \mathrm{d}\nu(\lambda).$$

2 If  $f \in \mathcal{L}^1(X, \mu)$ , then the set of  $\lambda \in \mathcal{E}$  such that  $f \notin \mathcal{L}^1(X, \lambda)$ is a Borel subset of  $\mathcal{E}$  that has  $\nu$ -measure zero. For  $\lambda \in \mathcal{E}$ , let  $l_f(\lambda) := \int_X f(x) d\lambda(x)$  if  $f \in \mathcal{L}^1(X, \lambda)$ , and let  $l_f(\lambda) := 0$  if  $f \notin \mathcal{L}^1(X, \lambda)$ . Then  $l_f \in \mathcal{L}^1(\mathcal{E}, \nu)$ , and

$$\int_X f(x) \,\mathrm{d}\mu(x) = \int_{\mathcal{E}} I_f(\lambda) \,\mathrm{d}\nu(\lambda).$$



Let  $1 \leq p < \infty$ , and let  $f \in \mathcal{L}^p(X, \mu)$ . Then the set of  $\lambda \in \mathcal{E}$  such that  $f \notin \mathcal{L}^p(X, \lambda)$  is a Borel subset of  $\mathcal{E}$  that has  $\nu$ -measure zero. For  $\lambda \in \mathcal{E}$ , let  $s_f(\lambda) := [f]_{\lambda}$  if  $f \in \mathcal{L}^p(X, \lambda)$ , and let  $s_f(\lambda) := [0]_{\lambda}$  otherwise. Then

$$\|[f]_{\mu}\|_{\mathrm{L}^{p}(X,\mu)} = \left(\int_{\mathcal{E}} \|s_{f}(\lambda)\|_{\mathrm{L}^{p}(X,\lambda)}^{p} \mathrm{d}\nu(\lambda)\right)^{1/p}$$

#### Moving in the right direction

- Norm on L<sup>p</sup>(X, μ) has been disintegrated into the norms on the L<sup>p</sup>(X, λ) as λ ranges over *E*
- We see: if  $[f]_{\mu} = 0$   $\mu$ -almost everywhere, then  $[f]_{\lambda} = [0]_{\lambda}$  for  $\nu$ -almost all  $\lambda \in \mathcal{E}$
- Equivalence classes of sections just around the corner

| Introduction<br>0000000 | Ergodic decomposition | Direct integrals<br>000000 | Disintegration: spatial case | Disintegration: general case |  |
|-------------------------|-----------------------|----------------------------|------------------------------|------------------------------|--|
| COLLECTING THE RESULTS  |                       |                            |                              |                              |  |

#### So far

- Have a bundle of Banach spaces  $\bigsqcup_{\lambda \in \mathcal{E}} L^p(X, \lambda)$  over  $\mathcal{E}$
- For each  $f \in \mathcal{L}^p(X, \mu)$ , we have a section

$$s_f: \mathcal{E} \to \bigsqcup_{\lambda \in \mathcal{E}} \mathrm{L}^p(X, \lambda)$$

that is (essentially) given by

$$s_f = [f]_\lambda \quad (\lambda \in \mathcal{E})$$

- The map  $f \mapsto s_f$  is *G*-equivariant: 'restricting to an orbit is *G*-equivariant'

| Introduction<br>0000000 | Ergodic decomposition<br>○○○○○○○○○ | Direct integrals<br>000000 | Disintegration: spatial case | Disintegration: general case |  |
|-------------------------|------------------------------------|----------------------------|------------------------------|------------------------------|--|
| COLLECTING THE RESULTS  |                                    |                            |                              |                              |  |

#### So far-but how to continue?

- Identify sections of ⊔<sub>λ∈E</sub> L<sup>p</sup>(X, λ) that are ν-almost everywhere equal
- Yields an abstract vector space  $\mathcal{S}_{\nu}$
- Have a (well-defined!) G-equivariant map

 $S: L^p(X, \mu) \to \mathcal{S}_{\nu}$ 

given by

$$S([f]_{\mu}) = [s_f]_{\nu}$$

Still to be done: show that S(L<sup>p</sup>(X, μ)) ⊂ S<sub>ν</sub> is a Banach space in a natural way, obtained by glueing together the spaces L<sup>p</sup>(X, λ) for λ ∈ E



# Slight extension of direct integral formalism in 'Randomly normed spaces'

- Formalism glues together Banach spaces/lattices that need not be equal
- But they are still connected: they contain (the image of) a common 'core' that is dense in each of them
- For example: the image of the simple functions on X is dense in L<sup>p</sup>(X, λ) for all λ ∈ C

## Special cases (take identical spaces)

- Direct integrals of separable Hilbert spaces
- Bochner L<sup>p</sup>-spaces



functions on X

 A collection { || · ||<sub>λ</sub>}<sub>λ∈ε</sub> of lattice seminorms on V such that λ → ||x||<sub>λ</sub> is a measurable function on ε for all x ∈ V: think of the p-seminorm on the simple functions for ergodic λ

#### The spaces to be glued together

- For each λ ∈ E, let B<sub>λ</sub> be the Banach lattice that is the completion of V/ker || · ||<sub>λ</sub> in the norm induced by the seminorm || · ||<sub>λ</sub>: think of L<sup>p</sup>(X, λ) for ergodic λ
- The B<sub>λ</sub> are glued together via the image of V: this is what we want

| Introduction<br>0000000                           | Ergodic decomposition | Direct integrals<br>00●000 | Disintegration: spatial case | Disintegration: general case |  |
|---------------------------------------------------|-----------------------|----------------------------|------------------------------|------------------------------|--|
| WALKING THROUGH THE FORMALISM FOR BANACH LATTICES |                       |                            |                              |                              |  |

# Sections

- A section is a map  $s : \mathcal{E} \to \bigsqcup_{\lambda \in \mathcal{E}} B_{\lambda}$  such that  $s(\lambda) \in B_{\lambda}$  for all  $\lambda \in \mathcal{E}$
- A simple section is a section of the form

$$s(\lambda) = \left[\sum_{k=1}^{n} \mathbf{1}_{\mathcal{A}_{k}}(\lambda) x_{k}\right]_{\lambda} \in V/\ker \|\cdot\|_{\lambda} \subset B_{\lambda}$$

for  $x_i \in V$  and measurable  $A_i \subset \mathcal{E}$ 

 A measurable section is a section that is the pointwise limit (in the various B<sub>λ</sub>) of simple sections



## Direct integral

- Measurable sections form vector lattice with pointwise operations
- Identify measurable sections that agree  $\nu$ -almost everywhere
- Gives vector lattice again
- Denoted by  $\int_{\mathcal{E}}^{\oplus} B_{\lambda} d\nu(\lambda)$ : the direct integral of the  $B_{\lambda}$  (with respect to  $\nu$ )

#### Important point

- For each measurable section s, the function  $\lambda \to \|s(\lambda)\|_{\lambda}$  on  $\mathcal E$  is measurable
- Can use this to locate normed subspaces of  $\int_{\mathcal{E}}^{\oplus} B_{\lambda} d\nu(\lambda)$



# L<sup>*p*</sup>-direct integrals

• Consider those equivalence classes  $[s]_{\nu} \in \int_{\mathcal{E}}^{\oplus} B_{\lambda} d\nu(\lambda)$  such that

$$\|[\boldsymbol{s}]_{\boldsymbol{\nu}}\|_{\boldsymbol{\rho}} \coloneqq \left(\int_{\mathcal{E}} \|\boldsymbol{s}(\boldsymbol{\lambda})\|_{\boldsymbol{\lambda}}^{\boldsymbol{\rho}} \, \mathrm{d}\boldsymbol{\nu}(\boldsymbol{\lambda})\right)^{1/\boldsymbol{\rho}} < \infty$$

- Does not depend on the representative
- Form a normed vector lattice
- Notation:

$$\left(\int_{\mathcal{E}}^{\oplus} B_{\lambda} \, \mathrm{d} \nu(\lambda)\right)_{\mathrm{L}^{p}}$$

• Name: L<sup>p</sup>-direct integral of the family  $(B_{\lambda})_{\lambda \in \mathcal{E}}$ 



#### Proposition

The L<sup>p</sup>-direct integral

$$\left(\int_{\mathcal{E}}^{\oplus} B_{\lambda} \, \mathrm{d} \nu(\lambda)
ight)_{\mathrm{L}^{p}}$$

is a Banach lattice. The set of all  $\nu$ -equivalence classes of p-integrable simple sections is a dense sublattice.

#### Proof of completeness

- Inspired by the usual proof for L<sup>p</sup>-spaces. Be careful with measurability
- Haydon, Levy, and Raynaud work with complete measures in 'Randomly normed spaces'

rgodic decompositic= 200000000000 Direct integrals

Disintegration: spatial case

Disintegration: general case 0000

BACK TO OUR CONTEXT: PUTTING THINGS TOGETHER

#### Combine with results from ergodic decomposition

• For  $f \in L^p(X, \mu)$ , have a section  $s_f : \mathcal{E} \to \bigsqcup_{\lambda \in \mathcal{E}} L^p(X, \lambda)$  that is (essentially) given by

$$s_f(\lambda) = [f]_{\lambda} \quad (\lambda \in \mathcal{E})$$

- Can show:  $s_f$  is a measurable section of  $\bigsqcup_{\lambda \in \mathcal{E}} \mathrm{L}^p(X, \lambda)$
- Have map  $S: L^p(X, \mu) o \int_{\mathcal{E}}^{\oplus} L^p(X, \lambda) d\nu(\lambda)$  given by

$$S([f]_{\mu}) = [s_f]_{\nu}$$

- Disintegration of the *p*-norm shows that this is well-defined, and that S is an isometric embedding of L<sup>p</sup>(X, μ) into
   (∫<sup>⊕</sup><sub>ε</sub> L<sup>p</sup>(X, λ) dν(λ))<sub>L<sup>p</sup></sub>
- Use properties of β to verify that the image contains the ν-equivalence classes of simple sections. These are dense, so...



#### Theorem (disintegration: spatial case)

Let (G, X) be a Polish topological dynamical system with locally compact G, let  $1 \leq p < \infty$ , and let  $\mu$  be an invariant Borel probability measure on X. Let  $\mathcal{E}$  be the ergodic Borel probability measures on X, carrying the weak\*-topology from  $C_{\rm b}(X)$ . Choose a decomposition map  $\beta : X \to \mathcal{E}$ , and let  $\nu$  be the Borel probability measure on  $\mathcal{E}$  that is the push-forward of  $\mu$  via  $\beta$ . Consider the L<sup>p</sup>-direct integral  $\left(\int_{\mathcal{E}}^{\oplus} L^p(X,\lambda) d\mu(\lambda)\right)_{T_p}$  that corresponds to the vector lattice of simple functions on X and the family of p-seminorms on it that corresponds to  $\mathcal{E}$ . Then there is a natural isometric lattice isomorphism

$$\mathcal{S}: \mathrm{L}^p(\mathcal{X},\mu) o \left(\int_{\mathcal{E}}^{\oplus} \mathrm{L}^p(\mathcal{X},\lambda) \,\mathrm{d}\mu(\lambda)
ight)_{\mathrm{L}^p}$$

under which the natural action of G on  $L^{p}(X, \mu)$  corresponds to the order indecomposable natural action of G on the fibres.

Direct integrals

Disintegration: spatial case

Disintegration: general case • 0 0 0

#### GENERAL CASE: WHAT IF THERE IS NO SPATIAL ACTION?

# More general context

- Borel probability space  $(X, \mu)$
- Strongly continuous representation of Polish locally compact G on L<sup>p</sup>(X, µ) as positive isometries leaving 1 fixed
- So: no underlying action of G on underlying point set X
- Can we still disintegrate the representation into order indecomposables?

# Solution: find spatial model for the situation

- If  $L^p(X, \mu)$  is separable: yes
- Idea behind reduction to spatial case goes back to Varadarajan (?)
- Thanks to Markus Haase for pointing this out

Disintegration: general case FINDING A SPATIAL MODEL Lemma Let  $(X, \mu)$  be a probability space. Suppose that  $L^{p}(X, \mu)$  is separable, and that the locally compact Polish group G acts strongly continuously on  $L^p(X, \mu)$  as positive isometries that leave the constants fixed. Then there exists a separable G-invariant closed subalgebra A of  $(L^{\infty}(X,\mu), \|\cdot\|_{\infty})$  that contains  $\mathbf{1}_X$ , is dense in  $L^p(X,\mu)$ , and is such that the restricted representation of G on  $(A, \|\cdot\|_{\infty})$  is strongly continuous.

#### Where the new space comes from

- Gelfand-Naimark (via complexification) yields compact K and unital isometric algebra and lattice isomorphism  $\Phi: (A, \|\cdot\|_{\infty}) \to (C(K), \|\cdot\|_{\infty})$
- A is separable, so K is compact metrisable space: Polish

Direct integrals

Disintegration: spatial case

Disintegration: general case

#### FINDING A SPATIAL MODEL

# Take a few steps to transfer everything to K (details omitted)

- G acts strongly continuously on A: gives action of G on K that is continuous in both variables
- Then  $\Phi: A \to C(K)$  is *G*-equivariant by construction
- $\blacksquare$  Riesz representation theorem gives Borel probability measure  $\widetilde{\mu}$  on K such that

$$\int_{\mathcal{K}} \Phi(f) \, \mathrm{d}\widetilde{\mu} = \int_{\mathcal{X}} f \, \mathrm{d}\mu \quad (f \in \mathcal{A})$$

- $\widetilde{\mu}$  is G-invariant since G acts as isometries on  $\mathrm{L}^p(X,\mu)$
- $\Phi$  is isometric for the p-norms corresponding to  $\widetilde{\mu}$  on K and to  $\mu$  on X
- Hence (A is dense in L<sup>p</sup>(X, μ)!) Φ extends to G-equivariant isometric lattice isomorphism between L<sup>p</sup>(K, μ̃) and L<sup>p</sup>(X, μ)



#### Mission accomplished

- Have found an alternative model for the representation of G on L<sup>p</sup>(X, μ): the representation of G on L<sup>p</sup>(K, μ̃) that originates from the action of G on K
- This we can handle...

#### Theorem (disintegration: general case)

Let G be a locally compact Polish group, let  $1 \le p < \infty$ , and let  $\mu$ be a probability measure on a set X such that  $L^p(X, \mu)$  is separable. If  $\rho : G \to B(L^p(X, \mu))$  is a strongly continuous representation as positive isometries leaving the constants fixed, then  $\rho$  is isometrically lattice equivalent to an  $L^p$ -direct integral of similar representations on  $L^p$ -spaces (for Borel probability measures on a common compact metric space) that are order indecomposable.