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Overview

Introduction: representations of groups and disintegration into
indecomposable representations

Lp-context: ergodic decomposition and relation with order
indecomposable representations

Direct integrals of Banach lattices

Disintegration of group actions on Lp-spaces: spatial case

Disintegration of group actions on Lp-spaces: general case

Disclaimer: not the final answer for all positive isometric actions

Measures will be finite

Group actions will leave the constants fixed

1 ≤ p <∞
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UNITARY REPRESENTATIONS ON HILBERT SPACES

Unitary group representation of a locally compact group G

Is a homomorphism ρ : G 7→ U(H) into the unitary group of a
Hilbert space

Tacitly always assumed that g 7→ ρ(g)x is continuous for all
x ∈ H (representation is strongly continuous)

Building new representations from given ones

If ρ1, ρ2 are two unitary representations on H1 and H2, then
ρ1 ⊕ ρ2 : G → U(H1 ⊕ H2) is another one, and H1 and H2 are
closed invariant subspaces

Elementary building blocks: a unitary representation on H is
indecomposable (equivalently: irreducible) if every
decomposition H = H1 ⊕ H2 into closed invariant subspaces is
trivial, i.e. if H1 = {0} or H1 = H
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UNITARY REPRESENTATIONS ON HILBERT SPACES

Disintegration of ρ : G → U(H) as a direct integral

If G and H are separable, there exist a space X , a measure µ on
X , families of Hilbert spaces (Hx)x∈X and unitary representations
(ρx)x∈X of G on Hx such that

(ρ,H) and (
∫ ⊕
X ρx dµ(x),

∫ ⊕
X Hx dµ(x)) are unitarily equivalent

µ-almost ρx are indecomposable

Idea ∫ ⊕
X Hx dµ(x)) consists of ‘all’ maps s : X →

⊔
x∈X Hx such

that s(x) ∈ Hx for all x and such that∫
X
‖s(x)‖2Hx

dµ(x) <∞

∫ ⊕
X ρx dµ(x) acts pointwise (‘in each fibre’)
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UNITARY REPRESENTATIONS ON HILBERT SPACES

Direct integrals of unitary representations

Finite Hilbert sums are direct integrals for a counting measure

In general: cannot vary s(x) freely with x as for finite direct
sum:

Need to stay square integrable
Measurability conditions must be met

Unitary moral in separable case

Every unitary representation on H is built from
indecomposable ones

Equivalently: every representation as automorphisms of H is
built from indecomposable ones

Glueing formalism is that of a direct integral

The Hx are (can be taken to be) a subspace of `2
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POSITIVE REPRESENTATIONS ON BANACH LATTICES

Question

What about representations of G as automorphisms of a
Banach lattice E?

Equivalently: what about homomorphisms ρ : G → B(E ) such
that every ρ(g) is an isometric lattice automorphism of E?

Still equivalently: what about representations of G as positive
isometries of E?

Can they be disintegrated into ‘indecomposable’ ones?

Expectation management

Unitary theory works well for representations in one space: `2

Great variety of Banach lattices

Can’t expect to cover everything; need to find ‘the right class’
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POSITIVE REPRESENTATIONS ON BANACH LATTICES

Indecomposability for positive representation on Banach lattice E

If E = E1 ⊕ E2 is an order direct sum of two Banach
sublattices, then E1 and E2 are, in fact, projection bands and
each other’s disjoint complement

So: a positive representation of G on E is order
indecomposable if {0} and E are the only invariant projection
bands

Testing ground for disintegration issues: Lp-spaces

Ubiquity of examples

Good description of projection bands
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Lp -SPACES

Large class of examples

Whenever G acts on a space X that carries an invariant measure
µ, there is a natural action of G on Lp(X , µ), given by

[ρ(g)]f (x) := f (g−1 · x)

Note:

ρ is a representation of G as positive isometries of the Banach
lattice Lp(X , µ)

If µ is finite: G leaves the constant function 1 ∈ Lp(X , µ)
fixed
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Lp -SPACES

Can show (goal of the lecture)

If G is a locally compact Polish group, if 1 ≤ p <∞, if µ is a
probability measure on a set X such that Lp(X , µ) is separable,
and if ρ : G → B(Lp(X , µ)) is a strongly continuous representation
as positive isometries leaving the constants fixed, then ρ can be
disintegrated into order indecomposable positive isometric
representations of G on Banach lattices.

Remarks

Disintegration uses Lp-direct integral of Banach spaces

G does not necessarily act on X

Need to cover that case first, though

Polish: (homeomorphic to) separable complete metric space

All second countable locally compact Hausdorff spaces (hence
all Lie groups) are Polish
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WHY WE CAN TACKLE THIS CASE

Key observation: link with ergodic decomposition

Suppose the abstract group G acts as measurable
transformation on (X , µ) with µ finite

Projection bands: all f ∈ Lp(X , µ) vanishing a.e. on a given
measurable subset

Invariant projection bands: all f ∈ Lp(X , µ) vanishing a.e. on
a given essentially invariant measurable subset

So: natural representation ρ of G on Lp(X , µ) is order
indecomposable ⇔ only trivial invariant projection bands ⇔
only trivial essentially invariant measurable subsets ⇔ µ is
ergodic

Hope

Ergodic decomposition of µ will ‘somehow’ give decomposition of
ρ into order indecomposable representations
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EXPLOIT ERGODIC DECOMPOSITION—HOW, EXACTLY?

Context for the moment

Abstract G acts on X with invariant probability measure µ

First attempt

Take an ergodic measure λ

For f ∈ Lp(X , µ), consider f as an element of Lp(X , λ)

Glue all these new elements together as λ ranges over de
ergodic measures

Problems with first attempt

Not clear how to glue (but see later)

f need not be in Lp(X , λ)

Map need not even be well-defined
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TOY EXAMPLE: T ACTS ON D

Toy example

The unit circle T acts on the closed unit disk D via rotations

Invariant probability measure µ: normalised Lebesgue measure

Ergodic measures: rotation invariant probability measures λr
on the orbits rT (circles with radius r ∈ [0, 1]), viewed as
measures on D

Problems with first attempt (here: ‘restriction to circles’)

If f ∈ Lp(D, µ), and r ∈ [0, 1], then f need not be in
Lp(D, λr ): easy examples with function vanishing off rT
If f and g represent the same element of Lp(D, µ), and
r ∈ [0, 1], then their ‘interpretations’ in Lp(D, λr ) need not
coincide: same type of example
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WAY OUT IN SUITABLE CONTEXT

Outline of solution: measure on the ergodic measures and precision

Introduce a probability measure ν on the set of ergodic
measures E
If f ∈ Lp(X , µ), i.e. if f is p-integrable with respect µ, then
f ∈ Lp(X , λ) for ν-almost all λ in E
If [f ]µ = [g ]µ in Lp(X , µ), and if we define [f ]λ = [0]λ for the
exceptional λ ∈ E (and naturally otherwise), and likewise for
g , then [f ]λ = [g ]λ for ν-almost λ ∈ E
So: get a map from Lp(X , µ) to ν-almost everywhere
equivalence classes of sections

S : Lp(X , µ)→
⊔
λ∈E

Lp(X , λ)
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FIXED SUITABLE CONTEXT TO MAKE IT WORK

For the time being

G is a locally compact Polish group

X is a Polish space

G acts on X (simultaneous continuity in both variables)

µ is an invariant Borel probability measure on X

E is the (non-empty) set of ergodic Borel probability measures
on X

E is supplied with the induced weak*-topology from Cb(X )∗

Be careful

Need to keep distinction between f , [f ]µ, and [f ]λ for λ ∈ E
Measures are not necessarily complete

Measurability is an issue to keep track of
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ERGODIC DECOMPOSITION THEOREM FROM THE EARLY SIXTIES

Theorem (Farrell, Varadarajan)

In our Polish context (G ,X ), there exists a Borel measurable map
β : X → E , x 7→ βx , such that, for all invariant µ:

1 βgx = βx for all x ∈ X and g ∈ G ;

2 λ(β−1({λ})) = 1 for all λ ∈ E ;

3 For all Borel subsets Y of X ,

µ(Y ) =

∫
X
βx(Y )dµ(x).

Remarks

Parts 1 and 2: ‘ergodic measures live on union of orbits’

If G is compact: the ergodic measures are the push-forwards
of the Haar measure to the orbits, using any point on them

G compact, X locally compact: Seda and Wickstead (1976)
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PUT MEASURE ON THE ERGODIC MEASURES

Prepare to interpret the equation: introduce measure ν on E

Recall: for all Borel subsets Y of X ,

µ(Y ) =

∫
X
βx(Y ) dµ(x)

A bit nondescriptive

Becomes more transparent (and general!) by pushing µ
forward to E via β:

ν(A) := µ(β−1(A))

for Borel subsets A of E
Now we have a Borel probability measure ν on E
ν does not depend on the choice for β
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TONELLI AND FUBINI

Theorem (—, Rozendaal (?))

In our Polish context (G ,X ), with invariant µ on X and
push-forward ν of µ via β to E , we have the following:

1 If f : X → [0,∞] is Borel measurable, then the extended
function λ 7→

∫
X f (x)dλ(x), with values in [0,∞], is Borel

measurable on E . In [0,∞], we have∫
X
f (x) dµ(x) =

∫
E

(∫
X
f (x)dλ(x)

)
dν(λ).

2 If f ∈ L1(X , µ), then the set of λ ∈ E such that f /∈ L1(X , λ)
is a Borel subset of E that has ν-measure zero. For λ ∈ E , let
If (λ) :=

∫
X f (x)dλ(x) if f ∈ L1(X , λ), and let If (λ) := 0 if

f /∈ L1(X , λ). Then If ∈ L1(E , ν), and∫
X
f (x)dµ(x) =

∫
E
If (λ) dν(λ).
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DISINTEGRATING THE p-NORM

Corollary

Let 1 ≤ p <∞, and let f ∈ Lp(X , µ). Then the set of λ ∈ E such
that f /∈ Lp(X , λ) is a Borel subset of E that has ν-measure zero.
For λ ∈ E , let sf (λ) := [f ]λ if f ∈ Lp(X , λ), and let sf (λ) := [0]λ
otherwise. Then

‖[f ]µ‖Lp(X ,µ) =

(∫
E
‖sf (λ)‖pLp(X ,λ) dν(λ)

)1/p

.

Moving in the right direction

Norm on Lp(X , µ) has been disintegrated into the norms on
the Lp(X , λ) as λ ranges over E
We see: if [f ]µ = 0 µ-almost everywhere, then [f ]λ = [0]λ for
ν-almost all λ ∈ E
Equivalence classes of sections just around the corner
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COLLECTING THE RESULTS

So far

Have a bundle of Banach spaces
⊔
λ∈E L

p(X , λ) over E
For each f ∈ Lp(X , µ), we have a section

sf : E →
⊔
λ∈E

Lp(X , λ)

that is (essentially) given by

sf = [f ]λ (λ ∈ E)

G acts fibrewise on sections of
⊔
λ∈E L

p(X , λ), and the action
in each fibre by positive isometries is order indecomposable

The map f 7→ sf is G -equivariant: ‘restricting to an orbit is
G -equivariant’
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COLLECTING THE RESULTS

So far—but how to continue?

Identify sections of
⊔
λ∈E L

p(X , λ) that are ν-almost
everywhere equal

Yields an abstract vector space Sν
Have a (well-defined!) G -equivariant map

S : Lp(X , µ)→ Sν

given by
S([f ]µ) = [sf ]ν

Still to be done: show that S(Lp(X , µ)) ⊂ Sν is a Banach
space in a natural way, obtained by glueing together the
spaces Lp(X , λ) for λ ∈ E
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INSPIRED BY HAYDON, LEVY, AND RAYNAUD

Slight extension of direct integral formalism in ‘Randomly normed
spaces’

Formalism glues together Banach spaces/lattices that need
not be equal

But they are still connected: they contain (the image of) a
common ‘core’ that is dense in each of them

For example: the image of the simple functions on X is dense
in Lp(X , λ) for all λ ∈ E

Special cases (take identical spaces)

Direct integrals of separable Hilbert spaces

Bochner Lp-spaces
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WALKING THROUGH THE FORMALISM FOR BANACH LATTICES

Ingredients

A measure space (E , ν) (no conditions on ν)

A vector lattice V (the common ‘core’): think of the simple
functions on X

A collection {‖ · ‖λ}λ∈E of lattice seminorms on V such that
λ 7→ ‖x‖λ is a measurable function on E for all x ∈ V : think
of the p-seminorm on the simple functions for ergodic λ

The spaces to be glued together

For each λ ∈ E , let Bλ be the Banach lattice that is the
completion of V /ker ‖ · ‖λ in the norm induced by the
seminorm ‖ · ‖λ: think of Lp(X , λ) for ergodic λ

The Bλ are glued together via the image of V : this is what
we want
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WALKING THROUGH THE FORMALISM FOR BANACH LATTICES

Sections

A section is a map s : E →
⊔
λ∈E Bλ such that s(λ) ∈ Bλ for

all λ ∈ E
A simple section is a section of the form

s(λ) =

[
n∑

k=1

1Ak
(λ)xk

]
λ

∈ V /ker ‖ · ‖λ ⊂ Bλ

for xi ∈ V and measurable Ai ⊂ E
A measurable section is a section that is the pointwise limit
(in the various Bλ) of simple sections
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WALKING THROUGH THE FORMALISM FOR BANACH LATTICES

Direct integral

Measurable sections form vector lattice with pointwise
operations

Identify measurable sections that agree ν-almost everywhere

Gives vector lattice again

Denoted by
∫ ⊕
E Bλ dν(λ): the direct integral of the Bλ (with

respect to ν)

Important point

For each measurable section s, the function λ→ ‖s(λ)‖λ on
E is measurable

Can use this to locate normed subspaces of
∫ ⊕
E Bλ dν(λ)
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WALKING THROUGH THE FORMALISM FOR BANACH LATTICES

Lp-direct integrals

Consider those equivalence classes [s]ν ∈
∫ ⊕
E Bλ dν(λ) such

that

‖[s]ν‖p :=

(∫
E
‖s(λ)‖pλ dν(λ)

)1/p

<∞

Does not depend on the representative

Form a normed vector lattice

Notation: (∫ ⊕
E

Bλ dν(λ)

)
Lp

Name: Lp-direct integral of the family (Bλ)λ∈E
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WALKING THROUGH THE FORMALISM FOR BANACH LATTICES

Proposition

The Lp-direct integral (∫ ⊕
E

Bλ dν(λ)

)
Lp

is a Banach lattice. The set of all ν-equivalence classes of
p-integrable simple sections is a dense sublattice.

Proof of completeness

Inspired by the usual proof for Lp-spaces. Be careful with
measurability

Haydon, Levy, and Raynaud work with complete measures in
‘Randomly normed spaces’
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BACK TO OUR CONTEXT: PUTTING THINGS TOGETHER

Combine with results from ergodic decomposition

For f ∈ Lp(X , µ), have a section sf : E →
⊔
λ∈E L

p(X , λ) that
is (essentially) given by

sf (λ) = [f ]λ (λ ∈ E)

Can show: sf is a measurable section of
⊔
λ∈E L

p(X , λ)

Have map S : Lp(X , µ)→
∫ ⊕
E Lp(X , λ) dν(λ) given by

S([f ]µ) = [sf ]ν

Disintegration of the p-norm shows that this is well-defined,
and that S is an isometric embedding of Lp(X , µ) into(∫ ⊕
E Lp(X , λ)dν(λ)

)
Lp

Use properties of β to verify that the image contains the
ν-equivalence classes of simple sections. These are dense, so...
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AT LAST

Theorem (disintegration: spatial case)

Let (G ,X ) be a Polish topological dynamical system with locally
compact G , let 1 ≤ p <∞, and let µ be an invariant Borel
probability measure on X . Let E be the ergodic Borel probability
measures on X , carrying the weak*-topology from Cb(X ).
Choose a decomposition map β : X → E , and let ν be the Borel
probability measure on E that is the push-forward of µ via β.

Consider the Lp-direct integral
(∫ ⊕
E Lp(X , λ) dµ(λ)

)
Lp

that

corresponds to the vector lattice of simple functions on X and the
family of p-seminorms on it that corresponds to E .
Then there is a natural isometric lattice isomorphism

S : Lp(X , µ)→
(∫ ⊕
E

Lp(X , λ)dµ(λ)

)
Lp

under which the natural action of G on Lp(X , µ) corresponds to
the order indecomposable natural action of G on the fibres.
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GENERAL CASE: WHAT IF THERE IS NO SPATIAL ACTION?

More general context

Borel probability space (X , µ)

Strongly continuous representation of Polish locally compact
G on Lp(X , µ) as positive isometries leaving 1 fixed

So: no underlying action of G on underlying point set X

Can we still disintegrate the representation into order
indecomposables?

Solution: find spatial model for the situation

If Lp(X , µ) is separable: yes

Idea behind reduction to spatial case goes back to
Varadarajan (?)

Thanks to Markus Haase for pointing this out
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FINDING A SPATIAL MODEL

Lemma

Let (X , µ) be a probability space. Suppose that Lp(X , µ) is
separable, and that the locally compact Polish group G acts
strongly continuously on Lp(X , µ) as positive isometries that leave
the constants fixed.
Then there exists a separable G -invariant closed subalgebra A of
(L∞(X , µ), ‖ · ‖∞) that contains 1X , is dense in Lp(X , µ), and is
such that the restricted representation of G on (A, ‖ · ‖∞) is
strongly continuous.

Where the new space comes from

Gelfand-Naimark (via complexification) yields compact K and
unital isometric algebra and lattice isomorphism
Φ : (A, ‖ · ‖∞)→ (C(K ), ‖ · ‖∞)

A is separable, so K is compact metrisable space: Polish
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FINDING A SPATIAL MODEL

Take a few steps to transfer everything to K (details omitted)

G acts strongly continuously on A: gives action of G on K
that is continuous in both variables

Then Φ : A→ C(K ) is G -equivariant by construction

Riesz representation theorem gives Borel probability measure
µ̃ on K such that∫

K
Φ(f ) dµ̃ =

∫
X
f dµ (f ∈ A)

µ̃ is G -invariant since G acts as isometries on Lp(X , µ)

Φ is isometric for the p-norms corresponding to µ̃ on K and
to µ on X

Hence (A is dense in Lp(X , µ)!) Φ extends to G -equivariant
isometric lattice isomorphism between Lp(K , µ̃) and Lp(X , µ)
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AND NOW WE ARE BACK IN THE SPATIAL CASE

Mission accomplished

Have found an alternative model for the representation of G
on Lp(X , µ): the representation of G on Lp(K , µ̃) that
originates from the action of G on K

This we can handle...

Theorem (disintegration: general case)

Let G be a locally compact Polish group, let 1 ≤ p <∞, and let µ
be a probability measure on a set X such that Lp(X , µ) is
separable. If ρ : G → B(Lp(X , µ)) is a strongly continuous
representation as positive isometries leaving the constants fixed,
then ρ is isometrically lattice equivalent to an Lp-direct integral of
similar representations on Lp-spaces (for Borel probability
measures on a common compact metric space) that are order
indecomposable.
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