Disjointness preserving $\mathrm{C}_{0}\text{-semigroups}$ and local operators on ordered Banach spaces

Feng Zhang

Leiden University

With Onno van Gaans and Anke Kalauch

University of Alberta, Canada, 18 July 2017.

Theorem (W. Arendt, 1986)

Let A be the generator of a disjointness preserving semigroup $T(t)_{t\geq 0}$ on a Banach lattice X. Then A is local (i.e. $x \perp y$ implies $Ax \perp y$, $x \in D(A)$, $y \in X$).

Theorem (W. Arendt, 1986)

Let A be the generator of C_0 -semigroup $T(t)_{t\geq 0}$ on Banach lattice X with order continuous norm. TFAE:

(i) T(t)_{t≥0} is a semigroup of lattice homomorphism.
(ii) D(A) is a sublattice and A is local.

Outline

1 Normed partially ordered vector spaces

2 Local operators

3 Disjointness preserving C_0 -semigroups

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

• X is pre-Riesz space if $\forall x, y, z \in X$, $\{x + y, x + z\}^u \subseteq \{y, z\}^u$ implies $x \in K$, every directed Archimedean POVS is pre-Riesz.

• X is pre-Riesz space if $\forall x, y, z \in X$, $\{x + y, x + z\}^{u} \subseteq \{y, z\}^{u}$ implies $x \in K$, every directed Archimedean POVS is pre-Riesz.

• X is directed, a seminorm $\|\cdot\|$ on X is regular if $\|x\| = \inf\{\|y\|: -y \le x \le y\}, x \in X.$

• X is pre-Riesz space if $\forall x, y, z \in X$, $\{x + y, x + z\}^{u} \subseteq \{y, z\}^{u}$ implies $x \in K$, every directed Archimedean POVS is pre-Riesz.

• X is directed, a seminorm
$$\|\cdot\|$$
 on X is regular if $\|x\| = \inf\{\|y\|: -y \le x \le y\}, x \in X.$

• Semimonotone if $\exists M \in \mathbb{R}$ such that for every $x, y \in X$ with $0 \le x \le y$ one has $||x|| \le M ||y||$.

• X is pre-Riesz space if $\forall x, y, z \in X$, $\{x + y, x + z\}^{u} \subseteq \{y, z\}^{u}$ implies $x \in K$, every directed Archimedean POVS is pre-Riesz.

• X is directed, a seminorm
$$\|\cdot\|$$
 on X is regular if $\|x\| = \inf\{\|y\|: -y \le x \le y\}, x \in X.$

• Semimonotone if $\exists M \in \mathbb{R}$ such that for every $x, y \in X$ with $0 \le x \le y$ one has $||x|| \le M ||y||$.

• $x, y \in X$ are called disjoint, in symbol $x \perp y$, if $\{x + y, -x - y\}^{u} = \{x - y, -x + y\}^{u}$.

• $D \subseteq X$ is order dense in X if $x = \inf\{d \in D : x \le d\}, x \in X$.

Theorem (M. van Haandel, 1993)

Let X be a POVS, TFAE:

- (i) X is a pre-Riesz space.
- (ii) There exist a vector lattice X^ρ and a bipositive linear map
 i: X → X^ρ such that i[X] is order dense in X^ρ, and generates
 X^ρ as a vector lattice. Moreover, all spaces X^ρ are isomorphic as vector lattices.
- (X^{ρ}, i) is called the Riesz completion of X.

Lemma

If one of following statements holds,

- (i) (X, K) is a pre-Riesz space with a regular norm ||·|| such that K is closed.
- (ii) (X, K, ||·||) is an ordered Banach space with semimonotone norm.

Then every band in X is closed.

- $B \subseteq X$, $B^d = \{x \in X : x \perp y, \forall y \in B\}$.
- $B \subseteq X$ is a band in pre-Riesz space X if $B^{dd} = B$.

Outline

1 Normed partially ordered vector spaces

2 Local operators

3 Disjointness preserving C_0 -semigroups

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

(四)
 (四)

E 990

Definition

Let X be a POVS and let $T: X \supseteq \mathcal{D}(T) \to X$ be a linear operator.

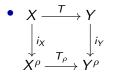
- (i) T is called local if for every x ∈ D(T), y ∈ X with x ⊥ y it follows that Tx ⊥ y.
- (ii) T is called band preserving if for every band B in X one has $T(B \cap D(T)) \subseteq B$.

- X a pre-Riesz space, $T: X \supseteq \mathcal{D}(T) \to X$ a linear operator.
- Properties
 - T is local \Leftrightarrow T is band preserving.
 - If S: X ⊇ D(S) → X and T: D(T) ⊇ X → X are local operators and α, β ∈ ℝ, then
 αS + βT: X ⊇ D(S) ∩ D(T) → X is a local operator.
 - If $S: X \supseteq \mathcal{D}(S) \to X$ and $T: X \supseteq \mathcal{D}(T) \to \mathcal{D}(S) \subseteq X$ are local operators, then $ST: X \supseteq \mathcal{D}(T) \to X$ is a local operator.

• Let X, Y be pre-Riesz spaces, $i: X \to Y$ is a Riesz* homomorphism, if for a finite $M \subseteq X$ we have $i[M^{ul}] \subseteq i[M]^{ul}$.

Theorem (M. van Haandel, 1993)

Let X, Y be pre-Riesz spaces with Riesz completions (X^{ρ}, i_X) and (Y^{ρ}, i_Y) respectively. Let $T : X \to Y$ be a linear operator. Then there exists a linear lattice homomorphism $T_{\rho} : X^{\rho} \to Y^{\rho}$ if and only if T is a Riesz* homomorphism such that $T_{\rho} \circ i_X = i_Y \circ T$.



Lemma

Let X, Y be pre-Riesz spaces, $i: X \rightarrow Y$ a bipositive Riesz* homomorphism.

Then for every $x, y \in X$ we have $x \perp y \iff i(x) \perp i(y)$.

Proposition

Let X be a pre-Riesz space, $T: X \supseteq \mathcal{D}(T) \to X$ a bijective linear operator, $i: \mathcal{D}(T) \to X$ is a Riesz* homomorphism.

If T and T^{-1} are positive, T is local, then T^{-1} is also local.

Outline

1 Normed partially ordered vector spaces

2 Local operators

3 Disjointness preserving C_0 -semigroups

・ロト・西ト・西ト・西・ うんの

Theorem (W. Arendt, 1986)

Let A be the generator of a disjointness preserving semigroup $T(t)_{t>0}$ on a Banach lattice X. Then A is local.

Theorem

Let X be an ordered Banach space with semimonotone norm, $T(t)_{t\geq 0} \in \mathcal{L}(X)$ a disjointness preserving C_0 -semigroup with generator A. Then A is local.

Example

Let A be the second derivative operator that A is local. The one-dimensional diffusion semigroup generated by A is given by

$$T(t)f(x) = \int_0^1 K_t(x, y)f(x)dy,$$

with kernel

$$\mathcal{K}_t(x,y) = 1 + 2\sum_{n=1}^{\infty} \exp(-\pi^2 n^2 t) \cos(\pi n x) \cdot \cos(\pi n y).$$

 $K_t(\cdot, \cdot)$ is a positive, continuous on $[0, 1]^2$. However, $T(t)_{t\geq 0}$ is not disjointness preserving on C[0, 1].

- 4 同 6 4 日 6 4 日 6

Ξ.

Theorem

Let X be an ordered Banach space with a semimonotone norm. If $A \in \mathcal{L}(X)$ is local, then exp(tA) is local for every $t \in \mathbb{R}$.

Theorem

Let X be an ordered Banach space with a semimonotone norm. If $A \in \mathcal{L}(X)$ is local, then exp(tA) is local for every $t \in \mathbb{R}$.

Example

(i) Translation Semigroup

 $X := C_{ub}(\mathbb{R}), T(t)x(s) := x(s+t), s \in \mathbb{R}, x \in X, t \ge 0.$ T(t) is a C₀-semigroup with generator A given by, $Ax := x', x \in \mathcal{D}(A)$. Then A is local (and unbounded), T is disjointness preserving, but not local.

Example

(ii) Multiplication Semigroup

 $X := C_0(\Omega), \Omega$ is a locally compact Hausdorff space, $q : \Omega \to \mathbb{R}$ be continuous and bounded above. Define $T_q(t)_{t \ge 0} : X \to X$ by

$$T_q(t)x = e^{tq(t)}x, x \in X.$$

 $T_q(t)_{t\geq 0}$ is a C₀-semigroup with generator A given by $Ax = qx, x \in \mathcal{D}(A)$. Then A is local and $T_q(t)$ is local for every $t \in [0, \infty)$.

Theorem (W. Arendt, 1986)

Let A be the generator of C_0 -semigroup $T(t)_{t\geq 0}$ on Banach lattice X with order continuous norm. TFAE:

(i) T(t)_{t≥0} is a semigroup of lattice homomorphism.
(ii) D(A) is a sublattice and A is local.

Theorem

Let X be an ordered Banach space with semimonotone norm, $T(t)_{t\geq 0}$ a C_0 -semigroup with generator A. If $A: X \supseteq \mathcal{D}(A) \to X$ is local and there exists a $\lambda_0 \in \rho(A) \cap \mathbb{R}$ such that for every $\lambda \in \rho(A)$ with $\lambda \geq \lambda_0$ we have that $(\lambda I - A)^{-1}: X \to \mathcal{D}(A) \subseteq X$ is local, then $T(t)_{t\geq 0}$ is local.

イロン イ団ン イヨン イヨン

I naa

Applies to

 $X = \text{Pol}^2[0, 1], K = \{p \in X; p(x) \ge 0, x \in [0, 1]\}$ is an order dense subspace of vector lattice C[0, 1]. Let $q \in C([0, 1])$ be bounded above. If $A: X \supseteq \mathcal{D}(A) \to X, x \mapsto qx$ is local and $(\lambda I - A)^{-1}$ is local for $\lambda > \sup_s q(s)$. Then $T(t)_{t>0}$ is local.

Applies to

 $X = \text{Pol}^2[0, 1], K = \{p \in X; p(x) \ge 0, x \in [0, 1]\}$ is an order dense subspace of vector lattice C[0, 1]. Let $q \in C([0, 1])$ be bounded above. If $A: X \supseteq \mathcal{D}(A) \to X, x \mapsto qx$ is local and $(\lambda I - A)^{-1}$ is local for $\lambda > \sup_s q(s)$. Then $T(t)_{t\ge 0}$ is local.

Does not apply to

- X is asked to be complete with semimonotone norm. However, e.g.
- differential function space $C^k(\Omega)$ -spaces,
- Sobolev spaces W^{p,q}(Ω),
- is not suitable.

イロト イ団ト イヨト イヨト

Ξ.

Thank you!