The uo-dual of a Banach lattice

Foivos Xanthos

Department of Mathematics, Ryerson Univeristy, Toronto

Positivity IX, July 202017

Based on joint work with N. Gao and D. Leung

Roadmap

- Preliminaries
- The uo-dual and its relationship with the oc-dual
- Preduals of Banach lattices
- Applications to the dual representation problem of risk measures

Preliminaries

Throughout the presentation X denotes a Banach lattice.
Definition
A net $\left(x_{\alpha}\right)$ in X is said to order converge to $x \in X, x_{\alpha} \xrightarrow{0} x$, if \exists another net $\left(y_{\gamma}\right)$ s.t. $y_{\gamma} \downarrow 0$ and $\forall \gamma$, there exists α_{0} such that $\left|x_{\alpha}-x\right| \leq y_{\gamma}$ for all $\alpha \geq \alpha_{0}$.

- A linear functional ϕ on X is said to be order continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each $x_{\alpha} \xrightarrow{0} 0$
- X_{n}^{\sim} is the space of order continuous functionals.

uo-convergence

Definition (Nakano, 1948)
A net $\left(x_{\alpha}\right)$ in X unbounded order converges to $x, x_{\alpha} \xrightarrow{\text { uo }} x$, if

$$
\left|x_{\alpha}-x\right| \wedge y \xrightarrow{o} 0 \text { for any } y \in X_{+} .
$$

uo-continuous functionals

Definition

A linear functional ϕ on X is said uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each net $\left(x_{\alpha}\right)$ such that $x_{\alpha} \xrightarrow{\text { uo }} 0$.

uo-continuous functionals

Definition

A linear functional ϕ on X is said uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each net $\left(x_{\alpha}\right)$ such that $x_{\alpha} \xrightarrow{\text { uo }} 0$.

Proposition
Let X be a non-atomic Banach lattice. The only uo-continuous functional on X is 0 .

uo-continuous functionals

Definition

A linear functional ϕ on X is said uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each net $\left(x_{\alpha}\right)$ such that $x_{\alpha} \xrightarrow{u 0} 0$.

Proposition

Let X be a non-atomic Banach lattice. The only uo-continuous functional on X is 0 .

Proof.
Let $\phi \neq 0$ be a non-zero uo-continuous functional of X and $x \in C_{\phi}, x>0$. WLOG, $\phi>0$. Since X is non-atomic, we can find an infinite disjoint sequence of non-zero vectors $\left(x_{n}\right)$ in $[0, x]$.

uo-continuous functionals

Definition

A linear functional ϕ on X is said uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each net $\left(x_{\alpha}\right)$ such that $x_{\alpha} \xrightarrow{\text { u0 }} 0$.

Proposition

Let X be a non-atomic Banach lattice. The only uo-continuous functional on X is 0 .

Proof.

Let $\phi \neq 0$ be a non-zero uo-continuous functional of X and $x \in C_{\phi}, x>0$. WLOG, $\phi>0$. Since X is non-atomic, we can find an infinite disjoint sequence of non-zero vectors $\left(x_{n}\right)$ in $[0, x]$.
Then we have that $\phi\left(x_{n}\right) \neq 0$ and $y_{n}=\frac{x_{n}}{\phi\left(x_{n}\right)} \xrightarrow{u 0} 0$.

uo-continuous functionals

Definition

A linear functional ϕ on X is said uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ for each net $\left(x_{\alpha}\right)$ such that $x_{\alpha} \xrightarrow{\text { u0 }} 0$.

Proposition

Let X be a non-atomic Banach lattice. The only uo-continuous functional on X is 0 .

Proof.

Let $\phi \neq 0$ be a non-zero uo-continuous functional of X and $x \in C_{\phi}, x>0$. WLOG, $\phi>0$. Since X is non-atomic, we can find an infinite disjoint sequence of non-zero vectors $\left(x_{n}\right)$ in $[0, x]$.
Then we have that $\phi\left(x_{n}\right) \neq 0$ and $y_{n}=\frac{x_{n}}{\phi\left(x_{n}\right)} \xrightarrow{u 0} 0$. Thus $1=\phi\left(y_{n}\right) \rightarrow 0$, a contradiction.

Boundedly uo-continuous functionals

Definition

A linear functional ϕ on X is said boundedly uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ whenever $\sup _{\alpha}\left\|x_{\alpha}\right\|<\infty$ and $x_{\alpha} \xrightarrow{\text { u0 }} 0$.

Boundedly uo-continuous functionals

Definition

A linear functional ϕ on X is said boundedly uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ whenever $\sup _{\alpha}\left\|x_{\alpha}\right\|<\infty$ and $x_{\alpha} \xrightarrow{u 0} 0$.

Remark

Since each order convergent net has a tail which is order bounded, and therefore, norm bounded, it is easy to see that every boundedly uo-continuous functional is order continuous.

Boundedly uo-continuous functionals

Definition

A linear functional ϕ on X is said boundedly uo-continuous if $\phi\left(x_{\alpha}\right) \rightarrow 0$ whenever $\sup _{\alpha}\left\|x_{\alpha}\right\|<\infty$ and $x_{\alpha} \xrightarrow{\text { U0 }} 0$.

Remark

Since each order convergent net has a tail which is order bounded, and therefore, norm bounded, it is easy to see that every boundedly uo-continuous functional is order continuous.

Proposition

Let $\phi \in X_{n}^{\sim}$. TFAE:

- ϕ is boundedly uo-continuous
- $\phi\left(x_{n}\right) \rightarrow 0$ for any norm bounded uo-null sequence $\left(x_{n}\right)$ in X.
- $\phi\left(x_{n}\right) \rightarrow 0$ for any norm bounded disjoint sequence $\left(x_{n}\right)$ in X.

The uo-dual

Definition

$X_{\text {uо }}^{\sim}$ is the space of all boundedly uo-continuous functionals. We call it the uo-dual of X.

$$
X_{\text {uо }}^{\sim} \subseteq X_{n}^{\sim} \subseteq X^{*}
$$

Sequence spaces

X	$X_{\text {uo }}^{\sim}$	X_{n}^{\sim}
$\ell_{p}, 1<p<\infty$	ℓ_{q}	ℓ_{q}
ℓ_{1}	c_{0}	ℓ_{∞}
ℓ_{∞}, c_{0}	ℓ_{1}	ℓ_{1}

Olricz spaces on $(\Omega, \mathcal{F}, \mathbb{P})$

X	$X_{\mu \sim}^{\sim}$	X_{n}^{\sim}
L_{1}	$\{0\}$	L_{∞}
L_{∞}	L_{1}	L_{1}
$L_{\Phi} \neq L_{1}, L_{\infty}$	H_{Ψ}	L_{ψ}

$$
\begin{gathered}
\|f\|_{\Phi}=\inf \left\{\lambda>0: \int \Phi\left(\frac{|f(\omega)|}{\lambda}\right) \mathrm{dP} \leq 1\right\} \\
L_{\Phi}=\left\{f \in L_{0} \mid\|f\|_{\Phi}<+\infty\right\}, \Psi(t)=\sup \{s t-\Phi(s): s \geq 0\} \\
H_{\Phi}=\left\{f \in L_{\Phi} \left\lvert\, \int \Phi\left(\frac{|f(\omega)|}{\lambda}\right) \mathrm{d} \mathbb{P}<\infty \forall \lambda>0\right.\right\}
\end{gathered}
$$

How does $X_{\text {ио }}^{\sim}$ sit in X_{n}^{\sim} ?

How does $X_{\text {ио }}^{\sim}$ sit in X_{n}^{\sim} ?

Recall that the order continuous part of X is given by

$$
X^{a}=\{x \in X: \text { every disjoint sequence in }[0,|x|] \text { is norm null }\}
$$

How does $X_{\text {ио }}^{\sim}$ sit in X_{n}^{\sim} ?

Recall that the order continuous part of X is given by
$X^{a}=\{x \in X:$ every disjoint sequence in $[0,|x|]$ is norm null $\}$

Theorem

$$
X_{u o}^{\sim}=\left(X_{n}^{\sim}\right)^{a}
$$

That is, $X_{\text {uo }}^{\sim}$ is the largest norm closed ideal of X_{n}^{\sim} which is order continuous in its own right.

When $X_{\text {ио }}^{\sim}=X^{*}$?

When $X_{\text {ио }}^{\sim}=X^{*}$?

$\left(^{*}\right): X_{n}^{\sim}=X^{*}$ iff X has order continuous norm.

When $X_{\text {ио }}^{\sim}=X^{*}$?

$\left(^{*}\right): X_{n}^{\sim}=X^{*}$ iff X has order continuous norm.
Corollary (Wickstead, 1977)
The following are equivalent:
(a) $X_{\text {ио }}^{\sim}=X^{*}$.
(b) X and X^{*} have order continuous norm.
(c) Every norm bounded uo-null net is weakly null.

When $X_{\text {ио }}^{\sim}=X^{*}$?

$\left(^{*}\right): X_{n}^{\sim}=X^{*}$ iff X has order continuous norm.
Corollary (Wickstead, 1977)
The following are equivalent:
(a) $X_{\text {ио }}^{\sim}=X^{*}$.
(b) X and X^{*} have order continuous norm.
(c) Every norm bounded uo-null net is weakly null.

Proof.
Use $X_{u o}^{\sim}=\left(X_{n}^{\sim}\right)^{a}$ and $\left({ }^{*}\right)$

When $\left(X^{*}\right)_{\text {uо }^{\sim}}=X$?

When $\left(X^{*}\right)_{\text {uо }}=X$?

$\left(^{*}\right):\left(X^{*}\right)_{n}^{\sim}=X$ iff X is a KB-space

When $\left(X^{*}\right)_{\text {uо }_{0}}=X$?

$\left(^{*}\right):\left(X^{*}\right)_{n}^{\sim}=X$ iff X is a KB-space
Theorem
The following are equivalent
(a) $\left(X^{*}\right)_{u o}^{\sim}=X$.
(b) X has order continuous norm.

When $\left(X^{*}\right)_{\text {uо }_{0}}=X$?

$\left(^{*}\right):\left(X^{*}\right)_{n}^{\sim}=X$ iff X is a KB-space
Theorem
The following are equivalent
(a) $\left(X^{*}\right)_{u o}^{\sim}=X$.
(b) X has order continuous norm.

Sketch proof.
$(a) \Rightarrow(b)$: Apply $X_{\mu \circ}^{\sim}=\left(X_{n}^{\sim}\right)^{a}$

When $\left(X^{*}\right)_{\text {uо }_{0}}=X$?

$\left(^{*}\right):\left(X^{*}\right)_{n}^{\sim}=X$ iff X is a KB-space
Theorem
The following are equivalent
(a) $\left(X^{*}\right)_{\text {uo }}^{\sim}=X$.
(b) X has order continuous norm.

Sketch proof.
$(a) \Rightarrow(b)$: Apply $X_{u o}^{\sim}=\left(X_{n}^{\sim}\right)^{a}$
$(b) \Rightarrow(a)$: Apply Nakano's Theorem: X is order dense in $\left(X_{n}^{\sim}\right)_{n}^{\sim}$

When $\left(X^{*}\right)_{\text {uо }_{0}}=X$?

$\left(^{*}\right):\left(X^{*}\right)_{n}^{\sim}=X$ iff X is a KB-space
Theorem
The following are equivalent
(a) $\left(X^{*}\right)_{\text {uo }}^{\sim}=X$.
(b) X has order continuous norm.

Sketch proof.
$(a) \Rightarrow(b)$: Apply $X_{u o}^{\sim}=\left(X_{n}^{\sim}\right)^{a}$
$(b) \Rightarrow(a)$: Apply Nakano's Theorem: X is order dense in $\left(X_{n}^{\sim}\right)_{n}^{\sim}$ and $\left(X^{*}\right)_{u o}^{\sim}=\left(\left(X^{*}\right)_{n}^{\sim}\right)^{a}$,

Preduals of Banach lattices

A dual Banach lattice need not have a unique up to lattice isomorphism Banach lattice predual (e.g. there exist non-atomic $C(K)$-spaces that are lattice isomorphic to ℓ_{1} Lacey, Wojtaszczyk 1976)

Preduals of Banach lattices

A dual Banach lattice need not have a unique up to lattice isomorphism Banach lattice predual (e.g. there exist non-atomic $C(K)$-spaces that are lattice isomorphic to ℓ_{1} Lacey, Wojtaszczyk 1976)

Corollary
Every Banach lattice X has at most one order continuous predual up to lattice isomorphism.

Preduals of Banach lattices

A dual Banach lattice need not have a unique up to lattice isomorphism Banach lattice predual (e.g. there exist non-atomic $C(K)$-spaces that are lattice isomorphic to ℓ_{1} Lacey, Wojtaszczyk 1976)

Corollary
Every Banach lattice X has at most one order continuous predual up to lattice isomorphism.

If so, it is $X_{\text {uo }}^{\sim}$.

Preduals of Banach lattices

A dual Banach lattice need not have a unique up to lattice isomorphism Banach lattice predual (e.g. there exist non-atomic $C(K)$-spaces that are lattice isomorphic to ℓ_{1} Lacey, Wojtaszczyk 1976)

Corollary
Every Banach lattice X has at most one order continuous predual up to lattice isomorphism.

If so, it is $X_{\text {uo }}^{\sim}$.
When X has an order continuous predual?

Monotonically complete Banach lattices

Definition
X is said to be monotonically complete if every norm bounded positive increasing net has a supremum.

Definition
X is said to be boundedly uo-complete if every norm bounded uo-Cauchy net is uo-convergent.

Monotonically complete Banach lattices

Definition
X is said to be monotonically complete if every norm bounded positive increasing net has a supremum.

Definition
X is said to be boundedly uo-complete if every norm bounded uo-Cauchy net is uo-convergent.

Theorem
Suppose X_{n}^{\sim} separates the point of X. Then
X is monotonically complete $\Longleftrightarrow X$ boundedly uo-complete.

Banach lattices with order continuous predual

Theorem
If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Banach lattices with order continuous predual

Theorem
If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Proof of $(a) \Rightarrow(b)$.
Apply Banach-Alaoglu.

Banach lattices with order continuous predual

Theorem

If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Banach lattices with order continuous predual

Theorem

If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(b) \Rightarrow(c)$.
It is suffices to show that X is boundedly uo-complete.

Banach lattices with order continuous predual

Theorem

If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{\text {uо }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(b) \Rightarrow(c)$.
It is suffices to show that X is boundedly uo-complete.

- Let $\left(x_{\alpha}\right)$ be a bounded uo-Cauchy net in B_{X}.

Banach lattices with order continuous predual

Theorem

If $X_{\text {ио }}^{\sim}$ separates the points of X then following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(b) \Rightarrow(c)$.
It is suffices to show that X is boundedly uo-complete.

- Let $\left(x_{\alpha}\right)$ be a bounded uo-Cauchy net in B_{X}.
- Claim: X can be continuously embdedded into $\left(X_{\text {ио }}^{\sim}\right)^{*}$ as a regular sublattice.

Banach lattices with order continuous predual

Theorem

If $X_{u o}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{u о}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(b) \Rightarrow(c)$.
It is suffices to show that X is boundedly uo-complete.

- Let $\left(x_{\alpha}\right)$ be a bounded uo-Cauchy net in B_{X}.
- Claim: X can be continuously embdedded into $\left(X_{u o}^{\sim}\right)^{*}$ as a regular sublattice.
- (Gao, Troitsky, $X):\left(x_{\alpha}\right)$ is a bounded uo-Cauchy in $\left(X_{\text {uо }}^{\sim}\right)^{*}$.

Banach lattices with order continuous predual

Theorem

If $X_{\text {ио }}^{\sim}$ separates the points of X then the following are equivalent
(a) X has an order continuous predual.
(b) B_{X} is relatively $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(b) \Rightarrow(c)$.
It is suffices to show that X is boundedly uo-complete.

- Let $\left(x_{\alpha}\right)$ be a bounded uo-Cauchy net in B_{X}.
- Claim: X can be continuously embdedded into $\left(X_{\text {uо }}^{\sim}\right)^{*}$ as a regular sublattice.
- (Gao, Troitsky, $X):\left(x_{\alpha}\right)$ is a bounded uo-Cauchy in $\left(X_{\text {ио }}^{\sim}\right)^{*}$.
- (Gao): $x_{\alpha} \xrightarrow{\mu o, \sigma\left(\left(X_{u 0}^{\sim}\right)^{*}, X_{u 0}^{\sim}\right)} x^{* *}$ in $\left(X_{\mu o}^{\sim}\right)^{*}$. By (b) we have that $x_{\alpha} \xrightarrow{\text { uo }} x^{* *} \in X$.

Banach lattices with order continuous predual

Theorem
If $X_{\text {ио }}^{\sim}$ separates the points of X, then the following are equivalent
(a) X has an order continuous predual
(b) B_{X} is relatively $\sigma\left(X, X_{\text {uо }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Banach lattices with order continuous predual

Theorem
If $X_{\text {ио }}^{\sim}$ separates the points of X, then the following are equivalent
(a) X has an order continuous predual
(b) B_{X} is relatively $\sigma\left(X, X_{\text {uо }}^{\sim}\right)$-compact in X.
(c) X is monotonically complete.

Sketch Proof of $(c) \Rightarrow(a)$.

- (Meyer-Nieberg): j is
 a lattice isomorphism.
- Claim: The restriction $\operatorname{map} R$ of j is a lattice isometry from $\left(X_{n}^{\sim}\right)_{n}^{\sim}$ onto ($\left.X_{\text {ио }}^{\sim}\right)^{*}$.
- $i=R j$ is a (surjective) lattice isomorphism.

Delbaen's representation Theorem of risk measures on L_{∞}

Theorem (2001)

For any proper convex functional $\rho: L_{\infty}(\mathbb{P}) \rightarrow(-\infty, \infty]$, the following statements are equivalent:

1. $\rho(x)=\sup _{y \in L_{1}(\mathbb{P})}\left(\langle x, y\rangle-\rho^{*}(y)\right)$ for any $x \in L_{\infty}(\mathbb{P})$, where $\rho^{*}(y)=\sup _{x \in L_{\infty}(\mathbb{P})}(\langle x, y\rangle-\rho(x))$ for any $y \in L_{1}(\mathbb{P})$,
2. $\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right)$ for any bounded sequence $\left(x_{n}\right)$ in $L_{\infty}(\mathbb{P})$ converging a.e. to x.

Delbaen's representation Theorem of risk measures on L_{∞}

Theorem (2001)

For any proper convex functional $\rho: L_{\infty}(\mathbb{P}) \rightarrow(-\infty, \infty]$, the following statements are equivalent:

> 1. $\rho(x)=\sup _{y \in L_{1}(\mathbb{P})}\left(\langle x, y\rangle-\rho^{*}(y)\right)$ for any $x \in L_{\infty}(\mathbb{P})$, where $\rho^{*}(y)=\sup _{x \in L_{\infty}(\mathbb{P})}(\langle x, y\rangle-\rho(x))$ for any $y \in L_{1}(\mathbb{P})$,
2. $\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right)$ for any bounded sequence $\left(x_{n}\right)$ in $L_{\infty}(\mathbb{P})$ converging a.e. to x.

Problem (Dual representation problem)

Generalize the above result to Banach lattices. (see work of Biagini, Cheredito, Delbaen, Frittelli, Orihuela, Owari, Schachermayer)

Delbaen's representation Theorem of risk measures on L_{∞}

Theorem (2001)

For any proper convex functional $\rho: L_{\infty}(\mathbb{P}) \rightarrow(-\infty, \infty]$, the following statements are equivalent:

1. $\rho(x)=\sup _{y \in L_{1}(\mathbb{P})}\left(\langle x, y\rangle-\rho^{*}(y)\right)$ for any $x \in L_{\infty}(\mathbb{P})$, where $\rho^{*}(y)=\sup _{x \in L_{\infty}(\mathbb{P})}(\langle x, y\rangle-\rho(x))$ for any $y \in L_{1}(\mathbb{P})$,
2. $\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right)$ for any bounded sequence $\left(x_{n}\right)$ in $L_{\infty}(\mathbb{P})$ converging a.e. to x.

Problem (Dual representation problem)

Generalize the above result to Banach lattices. (see work of Biagini, Cheredito, Delbaen, Frittelli, Orihuela, Owari, Schachermayer)
How we can interpret the continuity condition in (2) if ρ acts on a Banach lattice?

o-approach

$$
\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right) \text { whenever } x_{n} \xrightarrow{o} x
$$

o-approach

$$
\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right) \text { whenever } x_{n} \xrightarrow{o} x
$$

In this case the dual representation problem can be reduced to the following one

Problem (Owari, 2014)
Is every order closed convex set $\sigma\left(X, X_{n}^{\sim}\right)$-closed?

o-approach

$$
\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right) \text { whenever } x_{n} \xrightarrow{o} x
$$

In this case the dual representation problem can be reduced to the following one

Problem (Owari, 2014)
Is every order closed convex set $\sigma\left(X, X_{n}^{\sim}\right)$-closed?
Denny's talk: There exists an order closed set in an Orlicz space X that is NOT $\sigma\left(X, X_{n}^{\sim}\right)$-closed.

uo-approach

$\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right)$ whenever $x_{n} \xrightarrow{\text { uo }} x$ and $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<+\infty$.

uo-approach

$$
\rho(x) \leq \liminf _{n} \rho\left(x_{n}\right) \text { whenever } x_{n} \xrightarrow{\text { uo }} x \text { and } \sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<+\infty .
$$

In this case the dual representation problem can be reduced to the following one

Problem

Is every boundedly uo-closed convex set $\sigma\left(X, X_{\text {uo }}^{\sim}\right)$-closed?
Definition
A set $C \subseteq X$ is said to be boundedly uo- closed if $C=\bar{C}^{\text {buo }}$, where

$$
\bar{C}^{\text {buo }}:=\left\{x \in X: x_{\alpha} \xrightarrow{\text { uo }} x \text { for some bounded net }\left(x_{\alpha}\right) \text { in } C\right\} .
$$

Proposition

Let X be a σ-order complete Banach lattice. The following statements are equivalent.

1. $\bar{C}^{\text {buo }}=\bar{C}^{\sigma\left(X, X_{\text {uo }}^{\sim}\right)}$ for every convex set C.
2. X and X^{*} are both order continuous.

Proposition

Let X be a σ-order complete Banach lattice. The following statements are equivalent.

1. $\bar{C}^{\text {buo }}=\bar{C}^{\sigma\left(X, X_{\text {uo }}^{\sim}\right)}$ for every convex set C.
2. X and X^{*} are both order continuous.

The proof of $(1) \Rightarrow(2)$ is based on the following result due to Ostrovskii: There exist a subspace W of ℓ^{∞} and $w \in \bar{W}^{\sigma\left(\ell^{\infty}, \ell^{1}\right)}$ such that w is not the $\sigma\left(\ell^{\infty}, \ell^{1}\right)$-limit of any sequence in W.

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Theorem
Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.
By the uniquness of the order continuous predual we have that $X=\left(X_{\text {ио }}^{\sim}\right)^{*}$.

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {uо }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.
By the uniquness of the order continuous predual we have that $X=\left(X_{\text {uо }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{\mu \circ}^{\sim}\right)$-closed (Krein-Smulian Theorem)

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.
By the uniquness of the order continuous predual we have that $X=\left(X_{\text {uо }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{\text {uo }}^{\sim}\right)$-closed (Krein-Smulian Theorem)
- \widetilde{C} is $|\sigma|\left(X, X_{\text {ио }}^{\sim}\right)$ (Kaplan's Theorem)

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.
By the uniquness of the order continuous predual we have that $X=\left(X_{\text {ио }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{\text {uо }}^{\sim}\right)$-closed (Krein-Smulian Theorem)
- \widetilde{C} is $|\sigma|\left(X, X_{\text {ио }}^{\sim}\right)$ (Kaplan's Theorem)

Since X has strictly positive bounded uo-continuous functional ϕ, we can embed X into the norm completion \widetilde{X} of $(X, \phi(|\cdot|))$ as a regular sublattice.

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.

By the uniquness of the order continuous predual we have that $X=\left(X_{\text {ио }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{u 0}^{\sim}\right)$-closed (Krein-Smulian Theorem)
- \widetilde{C} is $|\sigma|\left(X, X_{\text {ио }}^{\sim}\right)$ (Kaplan's Theorem)

Since X has strictly positive bounded uo-continuous functional ϕ, we can embed X into the norm completion \widetilde{X} of $(X, \phi(|\cdot|))$ as a regular sublattice. Let $x \in \overline{\widetilde{C}}^{|\sigma|\left(X, X_{u 0}^{\sim}\right)}$ and pick $\left(x_{a}\right) \subseteq \widetilde{C}$ such that $x_{\alpha} \xrightarrow{|\sigma|\left(X, X_{u 0}^{\sim}\right)} x$.

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.

By the uniquness of the order continuous predual we have that $X=\left(X_{\text {ио }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{u o}^{\sim}\right)$-closed (Krein-Smulian Theorem)
- \widetilde{C} is $|\sigma|\left(X, X_{\text {ио }}^{\sim}\right)$ (Kaplan's Theorem)

Since X has strictly positive bounded uo-continuous functional ϕ, we can embed X into the norm completion \widetilde{X} of $(X, \phi(|\cdot|))$ as a regular sublattice. Let $x \in \widetilde{\widetilde{C}}^{|\sigma|\left(X, X_{u 0}^{\sim}\right)}$ and pick $\left(x_{a}\right) \subseteq \widetilde{C}$ such that $x_{\alpha} \xrightarrow{|\sigma|\left(x, x_{u 0}^{\sim}\right)} x$. Then we can extract a sequence $\left(x_{n}\right)$ from $\left(x_{\alpha}\right)$ such that $x_{n} \xrightarrow{0} x$ in \widetilde{X}.

Theorem

Let Y be an order continuous Banach lattice with weak units, and let $X=Y^{*}$. Then every boundedly uo-closed convex set C in X is $\sigma\left(X, X_{\text {ио }}^{\sim}\right)$-closed.

Sketch Proof of Theorem.

By the uniquness of the order continuous predual we have that $X=\left(X_{\text {ио }}^{\sim}\right)^{*}$. Our problem can be reduced to the following ones: Show that

- $\widetilde{C}=C \cap k B_{X}$ is $\sigma\left(X, X_{u o}^{\sim}\right)$-closed (Krein-Smulian Theorem)
- \widetilde{C} is $|\sigma|\left(X, X_{\text {uо }}^{\sim}\right)$ (Kaplan's Theorem)

Since X has strictly positive bounded uo-continuous functional ϕ, we can embed X into the norm completion \widetilde{X} of $(X, \phi(|\cdot|))$ as a regular sublattice. Let $x \in \widetilde{\widetilde{C}}^{|\sigma|\left(X, X_{u 0}^{\sim}\right)}$ and pick $\left(x_{a}\right) \subseteq \widetilde{C}$ such that $x_{\alpha} \xrightarrow{|\sigma|\left(X, X_{u 0}^{\sim}\right)} x$. Then we can extract a sequence $\left(x_{n}\right)$ from $\left(x_{\alpha}\right)$ such that $x_{n} \xrightarrow{0} x$ in \widetilde{X}. Since X is a regular sublattice we have that $x_{n} \xrightarrow{\text { u0 }} x$ in X and thus $x \in \widetilde{C}$.

uo-dual representations of risk measures on Orlicz spaces

Theorem (Gao and X, Mathematical Finance)
If an Orlicz space L_{Φ} is not equal to L_{1}, then the following statements are equivalent for every proper (i.e., not identically ∞) convex functional $\rho: L_{\Phi} \rightarrow(-\infty, \infty]$.

1. $\rho(f)=\sup _{g \in H_{\psi}}\left(\int f g-\rho^{*}(g)\right)$ for any $f \in L_{\Phi}$, where H_{Ψ} is the conjugate Orlicz heart, and
$\rho^{*}(g)=\sup _{f \in L_{\phi}}\left(\int f g-\rho(f)\right)$ for any $g \in H_{\psi}$.
2. $\rho(f) \leq \lim \inf _{n} \rho\left(f_{n}\right)$, whenever $f_{n} \xrightarrow{\text { a.e. }} f$ and $\left(f_{n}\right)$ is norm bounded in L_{Φ}.

Thank you very much for your attention!

