Density of cones and the projective tensor product

Marten Wortel

July 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Throughout this talk:

 (X, C, τ) vector space, equipped with a cone C and a linear Hausdorff topology τ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $W \subset X$ wedge: W + W = W, $\mathbb{R}_+ W = W$
- $C \subset X$ cone: wedge with $C \cap -C = \{0\}$
- ► X': linear functionals
- ► X^{*}: continuous linear functionals
- X'_+ (X^*_+): (continuous) positive linear functionals

Throughout this talk:

 (X, C, τ) vector space, equipped with a cone C and a linear Hausdorff topology τ

- $W \subset X$ wedge: W + W = W, $\mathbb{R}_+ W = W$
- $C \subset X$ cone: wedge with $C \cap -C = \{0\}$
- ► X': linear functionals
- X*: continuous linear functionals
- X'_+ (X^*_+): (continuous) positive linear functionals
- Q: When is a cone C dense in X?

Lemma If τ is locally convex, then W is dense in X if and only if $X_{+}^{*} = \{0\}$

Lemma

If τ is locally convex, then W is dense in X if and only if $X_{+}^{*} = \{0\}$

Proof.

Suppose W is dense in X and let $\phi \in X_+^*$. Then $\phi(W) \subset \mathbb{R}_+$, so $\phi(X) \subset \mathbb{R}_+$, so $\phi = 0$. Suppose W is not dense in X. Let $x \notin \overline{W}$ and let $\phi \in X^*$ be such that

$$\phi(\mathbf{x}) < \lambda < \phi(\overline{W}).$$

Then $0 \neq \phi \in X_+^*$.

If dim $(X) < \infty$, then C is not dense in X:

If dim $(X) < \infty$, then C is not dense in X:

Lemma If dim $(X) < \infty$ and W is dense in X, then W = X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If dim $(X) < \infty$, then C is not dense in X:

Lemma If dim $(X) < \infty$ and W is dense in X, then W = X.

Proof.

Approximate each $x \in ex B_{\ell_n^{\infty}}$ by elements $y \in W$ and collect these y in a set $S \subset W$. Since

 $0\in (\operatorname{co} \operatorname{ex} B_{\ell_n^\infty})^\circ,$

 $0 \in (\operatorname{co} S)^{\circ} \subset W^{\circ}$, so W = X.

$L^p[0,1]$

- 0 $• <math>X = L^{p}[0, 1] = \{f : \int |f|^{p} < \infty\}$ • $C = L^{p}[0, 1]_{+}$ • $d(f, g) := \int |f - g|^{p}$ • (X, d) complete metric space with $X^{*} = \{0\}$ • If $\phi \in X'_{+}$ then $\phi \in X^{*}$, so $X'_{+} = \{0\}$
- *X*^{*}₊ = {0} for any *τ*
- C is dense in X for any locally convex τ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

However, C is d-closed!

Proposition

 $X'_+ = \{0\}$ if and only if C is dense in X for some (any) locally convex τ with $X^* = X'$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

 $X'_+ = \{0\}$ if and only if C is dense in X for some (any) locally convex τ with $X^* = X'$

Examples of such τ :

- $\sigma(X, X')$
- Strongest locally convex topology: all seminorms / all absolutely convex absorbing subsets

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lexicographic cones

- I partially ordered index set
- $\blacktriangleright F_0(I) := \{f \colon I \to \mathbb{R} \colon \operatorname{supp}(f) < \infty\}$
- $C := \{ f \in F_0(I) : f(j) < 0 \Rightarrow \exists i < j : f(i) > 0 \}$
- $Lex(I) := (F_0(I), C)$
- If I is totally ordered, then

$$C \setminus \{0\} = \{f \in F_0(I) \colon f(\min(\operatorname{supp}(f)) > 0\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lexicographic cones

I partially ordered index set

$$\blacktriangleright F_0(I) := \{f \colon I \to \mathbb{R} \colon \operatorname{supp}(f) < \infty\}$$

• $C := \{ f \in F_0(I) : f(j) < 0 \Rightarrow \exists i < j : f(i) > 0 \}$

•
$$Lex(I) := (F_0(I), C)$$

If I is totally ordered, then

$$C \setminus \{0\} = \{f \in F_0(I) \colon f(\min(\operatorname{supp}(f)) > 0\}$$

Examples:

• If
$$I = \{1, ..., n\}$$
, $1 < ... < n$, then $C = \mathbb{R}^n_{lex}$

• If $I = \{1, \ldots, n\}$ with the trivial order, then $C = \mathbb{R}^n_+$

$$C := \{ f \in F_0(I) \colon f(j) < 0 \Rightarrow \exists i < j \colon f(i) > 0 \}$$

Properties:

- If I is totally ordered, then Lex(I) is totally ordered
- If $I = J \sqcup K$ with J and K incomparable, then

$$Lex(I) \cong Lex(J) \oplus Lex(K)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

C is Archimedean if and only if I has the trivial order
 ...

Theorem C is dense in $Lex(\mathbb{Z})$ for any τ .

Proof. Let $f \in \text{Lex}(\mathbb{Z})$ and let $k < \min(\text{supp}(f))$. Then $C \ni f + e_k/n \to f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary Lex $(\mathbb{Z})'_+ = \{0\}$

Projective tensor product

►
$$(X, X_+)$$
, (Y, Y_+) , (Z, Z_+) ordered vector spaces

Definition

The projective cone $C(X_+, Y_+) \subset X \otimes Y$ is defined by

$$\mathcal{C}(X_+,Y_+):=\left\{\sum_{i=1}^n x_i\otimes y_i\colon x_i\in X_+,y_i\in Y_+
ight\}.$$

The ordered vector space $(X \otimes Y, C(X_+, Y_+))$ is called the *projective tensor product* of X and Y.

Projective tensor product

► (X, X_+) , (Y, Y_+) , (Z, Z_+) ordered vector spaces

Definition

The projective cone $C(X_+, Y_+) \subset X \otimes Y$ is defined by

$$C(X_+,Y_+):=\left\{\sum_{i=1}^n x_i\otimes y_i\colon x_i\in X_+,y_i\in Y_+
ight\}$$

The ordered vector space $(X \otimes Y, C(X_+, Y_+))$ is called the *projective tensor product* of X and Y.

Proposition (universal property)

If $\phi: X \times Y \to Z$ is a positive bilinear map, then there exists a unique positive linear map $\tilde{\phi}: X \otimes Y \to Z$ such that $\phi = \tilde{\phi} \circ \otimes$.

Question: is the projective cone a cone?

Theorem Let I and J be partially ordered index sets. Then

 $Lex(I) \otimes Lex(J) \cong Lex(I \times J).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: is the projective cone a cone?

Theorem Let I and J be partially ordered index sets. Then

 $Lex(I) \otimes Lex(J) \cong Lex(I \times J).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Every cone $C \subset \mathbb{R}^n$ is contained in a cone isomorphic to \mathbb{R}^n_{lex} .

Theorem

The projective cone is a cone.

Proof.

Let $\pm u \in C(X_+, Y_+)$. Then $\pm u \in E \otimes F$ with $\dim(E), \dim(F) < \infty$. So $\pm u \in C(E_+, F_+) \subset C(\mathbb{R}^n_{lex}, \mathbb{R}^m_{lex})$ which is isomorphic to the cone of $\text{Lex}(\{1, \ldots, n\} \times \{1, \ldots, m\})$. Hence u = 0.

Thank you for your attention!

Questions?

