Density of cones and the projective tensor product

Marten Wortel

July 2017

Throughout this talk:

- (X, C, τ) vector space, equipped with a cone C and a linear Hausdorff topology τ
- $W \subset X$ wedge: $W+W=W, \mathbb{R}_{+} W=W$
- $C \subset X$ cone: wedge with $C \cap-C=\{0\}$
- X^{\prime} : linear functionals
- X^{*} : continuous linear functionals
- $X_{+}^{\prime}\left(X_{+}^{*}\right)$: (continuous) positive linear functionals

Throughout this talk:

- (X, C, τ) vector space, equipped with a cone C and a linear Hausdorff topology τ
- $W \subset X$ wedge: $W+W=W, \mathbb{R}_{+} W=W$
- $C \subset X$ cone: wedge with $C \cap-C=\{0\}$
- X^{\prime} : linear functionals
- X^{*} : continuous linear functionals
- $X_{+}^{\prime}\left(X_{+}^{*}\right)$: (continuous) positive linear functionals

Q: When is a cone C dense in X ?

Lemma

If τ is locally convex, then W is dense in X if and only if $X_{+}^{*}=\{0\}$

Lemma

If τ is locally convex, then W is dense in X if and only if $X_{+}^{*}=\{0\}$
Proof.
Suppose W is dense in X and let $\phi \in X_{+}^{*}$. Then $\phi(W) \subset \mathbb{R}_{+}$, so $\phi(X) \subset \mathbb{R}_{+}$, so $\phi=0$.
Suppose W is not dense in X. Let $x \notin \bar{W}$ and let $\phi \in X^{*}$ be such that

$$
\phi(x)<\lambda<\phi(\bar{W})
$$

Then $0 \neq \phi \in X_{+}^{*}$.

If $\operatorname{dim}(X)<\infty$, then C is not dense in X :

If $\operatorname{dim}(X)<\infty$, then C is not dense in X :
Lemma
If $\operatorname{dim}(X)<\infty$ and W is dense in X, then $W=X$.

If $\operatorname{dim}(X)<\infty$, then C is not dense in X :
Lemma
If $\operatorname{dim}(X)<\infty$ and W is dense in X, then $W=X$.
Proof.
Approximate each $x \in \operatorname{ex} B_{\ell_{n}^{\infty}}$ by elements $y \in W$ and collect these y in a set $S \subset W$. Since

$$
\begin{aligned}
0 & \in\left(\operatorname{cosex} B_{\ell_{n}^{\infty}}\right)^{\circ} \\
0 \in(\cos S)^{\circ} \subset W^{\circ}, \text { so } W & =X .
\end{aligned}
$$

- $0<p<1$
- $X=L^{p}[0,1]=\left\{f: \int|f|^{p}<\infty\right\}$
- $C=L^{p}[0,1]_{+}$
- $d(f, g):=\int|f-g|^{p}$
- (X, d) complete metric space with $X^{*}=\{0\}$
- If $\phi \in X_{+}^{\prime}$ then $\phi \in X^{*}$, so $X_{+}^{\prime}=\{0\}$
- $X_{+}^{*}=\{0\}$ for any τ
- C is dense in X for any locally convex τ
- However, C is d-closed!

Proposition

$X_{+}^{\prime}=\{0\}$ if and only if C is dense in X for some (any) locally convex τ with $X^{*}=X^{\prime}$

Proposition

$X_{+}^{\prime}=\{0\}$ if and only if C is dense in X for some (any) locally convex τ with $X^{*}=X^{\prime}$
Examples of such τ :

- $\sigma\left(X, X^{\prime}\right)$
- Strongest locally convex topology: all seminorms / all absolutely convex absorbing subsets

Lexicographic cones

- I partially ordered index set
- $F_{0}(I):=\{f: I \rightarrow \mathbb{R}: \operatorname{supp}(f)<\infty\}$
- $C:=\left\{f \in F_{0}(I): f(j)<0 \Rightarrow \exists i<j: f(i)>0\right\}$
- Lex $(I):=\left(F_{0}(I), C\right)$
- If I is totally ordered, then

$$
C \backslash\{0\}=\left\{f \in F_{0}(I): f(\min (\operatorname{supp}(f))>0\}\right.
$$

Lexicographic cones

- I partially ordered index set
- $F_{0}(I):=\{f: I \rightarrow \mathbb{R}: \operatorname{supp}(f)<\infty\}$
- $C:=\left\{f \in F_{0}(I): f(j)<0 \Rightarrow \exists i<j: f(i)>0\right\}$
- Lex $(I):=\left(F_{0}(I), C\right)$
- If I is totally ordered, then

$$
C \backslash\{0\}=\left\{f \in F_{0}(I): f(\min (\operatorname{supp}(f))>0\}\right.
$$

Examples:

- If $I=\{1, \ldots, n\}, 1<\ldots<n$, then $C=\mathbb{R}_{\text {lex }}^{n}$
- If $I=\{1, \ldots, n\}$ with the trivial order, then $C=\mathbb{R}_{+}^{n}$

$$
C:=\left\{f \in F_{0}(I): f(j)<0 \Rightarrow \exists i<j: f(i)>0\right\}
$$

Properties:

- If I is totally ordered, then Lex (I) is totally ordered
- If $I=J \sqcup K$ with J and K incomparable, then

$$
\operatorname{Lex}(I) \cong \operatorname{Lex}(J) \oplus \operatorname{Lex}(K)
$$

- C is Archimedean if and only if I has the trivial order

$\operatorname{Lex}(\mathbb{Z})$

Theorem
C is dense in $\operatorname{Lex}(\mathbb{Z})$ for any τ.
Proof.
Let $f \in \operatorname{Lex}(\mathbb{Z})$ and let $k<\min (\operatorname{supp}(f))$. Then
$C \ni f+e_{k} / n \rightarrow f$.
Corollary
$\operatorname{Lex}(\mathbb{Z})_{+}^{\prime}=\{0\}$

Projective tensor product

- $\left(X, X_{+}\right),\left(Y, Y_{+}\right),\left(Z, Z_{+}\right)$ordered vector spaces

Definition
The projective cone $C\left(X_{+}, Y_{+}\right) \subset X \otimes Y$ is defined by

$$
C\left(X_{+}, Y_{+}\right):=\left\{\sum_{i=1}^{n} x_{i} \otimes y_{i}: x_{i} \in X_{+}, y_{i} \in Y_{+}\right\}
$$

The ordered vector space $\left(X \otimes Y, C\left(X_{+}, Y_{+}\right)\right)$is called the projective tensor product of X and Y.

Projective tensor product

- $\left(X, X_{+}\right),\left(Y, Y_{+}\right),\left(Z, Z_{+}\right)$ordered vector spaces

Definition

The projective cone $C\left(X_{+}, Y_{+}\right) \subset X \otimes Y$ is defined by

$$
C\left(X_{+}, Y_{+}\right):=\left\{\sum_{i=1}^{n} x_{i} \otimes y_{i}: x_{i} \in X_{+}, y_{i} \in Y_{+}\right\}
$$

The ordered vector space $\left(X \otimes Y, C\left(X_{+}, Y_{+}\right)\right)$is called the projective tensor product of X and Y.

Proposition (universal property)
If $\phi: X \times Y \rightarrow Z$ is a positive bilinear map, then there exists a unique positive linear map $\tilde{\phi}: X \otimes Y \rightarrow Z$ such that $\phi=\tilde{\phi} \circ \otimes$.

Question: is the projective cone a cone?
Theorem
Let I and J be partially ordered index sets. Then

$$
\operatorname{Lex}(I) \otimes \operatorname{Lex}(J) \cong \operatorname{Lex}(I \times J)
$$

Question: is the projective cone a cone?
Theorem
Let I and J be partially ordered index sets. Then

$$
\operatorname{Lex}(I) \otimes \operatorname{Lex}(J) \cong \operatorname{Lex}(I \times J)
$$

Theorem
Every cone $C \subset \mathbb{R}^{n}$ is contained in a cone isomorphic to $\mathbb{R}_{\text {lex }}^{n}$.

Theorem
The projective cone is a cone.
Proof.
Let $\pm u \in C\left(X_{+}, Y_{+}\right)$. Then $\pm u \in E \otimes F$ with $\operatorname{dim}(E), \operatorname{dim}(F)<\infty$. So $\pm u \in C\left(E_{+}, F_{+}\right) \subset C\left(\mathbb{R}_{\text {lex }}^{n}, \mathbb{R}_{\text {lex }}^{m}\right)$ which is isomorphic to the cone of $\operatorname{Lex}(\{1, \ldots, n\} \times\{1, \ldots, m\})$. Hence $u=0$.

Thank you for your attention!

Questions?

