Weak containment by restrictions of induced representations

Matthew Wiersma

University of Alberta

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let π and σ be representations of a locally compact group *G*.

Three notions for what it means for π to contain σ :

 $\blacktriangleright~\sigma$ is unitarily equivalent to a subrepresentation of π

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- σ is quasi-contained in π
- $\blacktriangleright~\sigma$ is weakly contained in π

Quasi-containment

 π, σ - representations of G $\operatorname{VN}_{\pi} := \pi(G)'' \subset \mathcal{B}(\mathcal{H}_{\pi})$

Definition

 σ is *quasi-contained* in π is σ is unitarily equivalent to subrepresentation of some amplification of π .

Theorem

 π quasi-contains σ iff the identity map on G extends to a normal *-homomorphism $VN_{\pi} \rightarrow VN_{\sigma}$.

Weak containment

 $\begin{array}{l} \pi, \sigma - \text{representations of } \mathcal{G} \\ \pi_{\xi,\eta} \colon \mathcal{G} \to \mathbb{C} \text{ defined by } \pi_{\xi,\eta}(s) = \langle \pi(s)\xi, \eta \rangle \text{ for } \xi, \eta \in \mathcal{H}_{\pi} \\ \mathrm{C}_{\pi}^* := \overline{\pi(\mathrm{L}^1(\mathcal{G}))}^{\|\cdot\|} \end{array}$

Definition

 σ is weakly contained in π (write $\sigma \prec \pi$) if for every $\xi \in \mathcal{H}_{\sigma}$, $\sigma_{\xi,\xi}$ is the limit of positive definite functions of the form $\sum_{i=1}^{N} \pi_{\eta_i,\eta_i}$ in the topology of uniform convergence on compact subsets of G.

Theorem

 π weakly contains σ if and only if the identity map on $L^1(G)$ extends to *-homomorphism $C^*_{\pi} \to C^*_{\sigma}$.

Let H be a closed subgroup of a locally compact group G and π a representation of H.

When is π "contained" in $(\operatorname{Ind}_{H}^{G}\pi)|_{H}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let H be a closed subgroup of a locally compact group G and π a representation of H.

When is π "contained" in $(\operatorname{Ind}_{H}^{G}\pi)|_{H}$?

Easy exercise

If G be a discrete group, then π is unitarily equivalent to a subrepresentation of $(\operatorname{Ind}_{H}^{G}\pi)|_{H}$.

Aside: Classes of Locally Compact Groups $\tau: G \to \mathcal{B}(L^1(G))$ defined by $\tau(s)f(t) = f(s^{-1}ts)\Delta(s)$

Definition

A locally compact group G is a SIN group if the identity of G admits a neighbhourhood base consisting of conjugation invariant compact sets K, i.e., sets K such that $s^{-1}Ks = K$ for all $s \in G$.

Example

- Abelian groups,
- Discrete groups,
- Compact groups

Theorem (Mosak)

A locally compact group G is SIN if and only if $L^1(G)$ has a *central* BAI, i.e., a BAI $\{e_\alpha\} \subset L^1(G)$ such that $\tau(s)e_\alpha = e_\alpha$ for all $s \in G$.

Aside: Classes of Locally Compact Groups

Definition

A locally compact group G is QSIN if $L^1(G)$ has a quasi-central BAI, i.e., a BAI $\{e_\alpha\} \subset L^1(G)$ such that $\|\tau(s)e_\alpha - e_\alpha\| \to 0$ uniformly on compact subsets of G.

Theorem (Losert-Rindler)

Every amenable group is QSIN.

Back to main question

Question

When does $(Ind_H^G \pi)|_H$ contain π ?

Theorem (Cowling-Rodway)

Let G be a SIN group. Then $(\operatorname{Ind}_{H}^{G}\pi)|_{H}$ quasi-contains π for every closed subgroup H of G and representation π of H.

Back to main question

Question

When does $(Ind_H^G \pi)|_H$ contain π ?

Theorem (Cowling-Rodway)

Let G be a SIN group. Then $(\operatorname{Ind}_{H}^{G}\pi)|_{H}$ quasi-contains π for every closed subgroup H of G and representation π of H.

Example (Khalil)

The above result fails for $G = \mathbb{R} \rtimes \mathbb{R}^+$ be the ax + b group and H be the subgroup \mathbb{R} .

Main result

Theorem (W.)

Let G be a QSIN group. Then $\pi \prec (Ind_{H}^{G}\pi)|_{H}$ for every closed subgroup $H \leq G$ and representation π of H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main result

Theorem (W.)

Let G be a QSIN group. Then $\pi \prec (Ind_H^G \pi)|_H$ for every closed subgroup $H \leq G$ and representation π of H.

Example (Bekka)

The above result fails for $G = SL(2, \mathbb{R})$ and $H = SL(2, \mathbb{Z})$.

Completely Positive Maps

Definition

Let A and B be C*-algebras. A linear map $\phi: A \rightarrow B$ is *completely positive* if

 $[a_{ij}] \in M_n(A)$ is positive $\Rightarrow [\phi(a_{ij})] \in M_n(B)$ is positive.

Nuclear C*-algebras

Definition

A C*-algebra A is *nuclear* if $A \otimes_{\min} B = A \otimes_{\max} B$ for every C*-algebra B.

Definition

A C*-algebra A has the completely positive approximation property (CPAP) if there exist ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to A$ such that

$$\|\psi_i \circ \phi_i(a) - a\| \to 0$$

for every $a \in A$.

Nuclear C*-algebras

Definition

A C*-algebra A is *nuclear* if $A \otimes_{\min} B = A \otimes_{\max} B$ for every C*-algebra B.

Definition

A C*-algebra A has the completely positive approximation property (CPAP) if there exist ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to A$ such that

$$\|\psi_i \circ \phi_i(a) - a\| \to 0$$

for every $a \in A$.

Theorem(Kirchberg)

A C*-algebra A is nuclear iff it has the CPAP.

Nuclearity of Group C*-algebras

$$\mathrm{C}^*_{\mathrm{r}}(\mathcal{G}) := \mathrm{C}^*_{\lambda} = \overline{\lambda(\mathrm{L}^1(\mathcal{G}))}^{\|\cdot\|}$$

 $\mathrm{C}^*(\mathcal{G}) := \mathrm{C}^*_{\pi_u}$, where π_u is universal representation of \mathcal{G}

Theorem (Lance)

Let G be a discrete group. Then G is amenable if and only if $\mathrm{C}^*_\mathrm{r}(G)$ is nuclear.

Theorem (Connes)

Let G be a separable and connected. Then $C^*(G)$ is nuclear.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exact C*-algebras

Definition

A C*-algebra A is *exact* if for every short exact sequence $0 \rightarrow J \rightarrow B \rightarrow C \rightarrow 0$ of C*-algebras, the sequence

$$0 \to A \otimes_{\min} J \to A \otimes_{\min} B \to A \otimes_{\min} C \to 0$$

is exact.

Theorem (Kirchberg)

Let A be a C*-algebra and suppose that $A \hookrightarrow \mathcal{B}(\mathcal{H})$ is a faithful embedding. The C*-algebra A has is exact if and only if there exists ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to \mathcal{B}(\mathcal{H})$ such that $\|\psi_i \circ \varphi_i(a) - a\| \to 0$ for all $a \in A$.

Exact C*-algebras

Definition

A C*-algebra A is *exact* if for every short exact sequence $0 \rightarrow J \rightarrow B \rightarrow C \rightarrow 0$ of C*-algebras, the sequence

$$0 \to A \otimes_{\min} J \to A \otimes_{\min} B \to A \otimes_{\min} C \to 0$$

is exact.

Theorem (Kirchberg)

Let A be a C*-algebra and suppose that $A \hookrightarrow \mathcal{B}(\mathcal{H})$ is a faithful embedding. The C*-algebra A has is exact if and only if there exists ccp maps $\varphi_i : A \to M_{n_i}(\mathbb{C})$ and $\psi_i : M_{n_i}(\mathbb{C}) \to \mathcal{B}(\mathcal{H})$ such that $\|\psi_i \circ \varphi_i(a) - a\| \to 0$ for all $a \in A$.

 $\mathsf{Nuclear} \Rightarrow \mathsf{Exact}$

$\mathrm{C}^*(\mathbb{F}_2)$ is not exact

Theorem (Wasserman)

The sequence

 $0 \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{J} \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*(\mathbb{F}_2) \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}(\mathbb{F}_2) \to 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is not exact, where J is the kernel of $C^*(\mathbb{F}_2) \to C^*_r(\mathbb{F}_2)$.

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.

 $\mathsf{Exact} \Rightarrow \mathsf{Locally} \; \mathsf{Reflexive}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local reflexivity and the local lifting property (LLP) are C^* -algebraic properties which are weaker than nuclearity.

 $\mathsf{Exact} \Rightarrow \mathsf{Locally} \; \mathsf{Reflexive}$

Definition

A unital C*-algebra A has the LLP if any ucp map $\varphi: A \to B/J$ is locally liftable, i.e., for any finite dimensional operator system $E \subset A$, there exists a ucp map $\psi: E \to B$ such that $\varphi = q \circ \psi$ (where $q: B \to B/J$ is the quotient map). A nonuital C*-algebra A is said to have the LLP if its unitization does.

Local reflexivity and the *local lifting property* (LLP) are C*-algebraic properties which are weaker than nuclearity.

 $\mathsf{Exact} \Rightarrow \mathsf{Locally} \; \mathsf{Reflexive}$

Definition

A unital C*-algebra A has the LLP if any ucp map $\varphi: A \to B/J$ is locally liftable, i.e., for any finite dimensional operator system $E \subset A$, there exists a ucp map $\psi: E \to B$ such that $\varphi = q \circ \psi$ (where $q: B \to B/J$ is the quotient map). A nonuital C*-algebra A is said to have the LLP if its unitization does.

Theorem (Kirchberg)

A C*-algebra A has the LLP if and only if $A \otimes_{\min} \mathcal{B}(\mathcal{H}) = A \otimes_{\max} \mathcal{B}(\mathcal{H})$ canonically.

Theorem (Effros-Haagerup)

If A is a locally reflexive C^* -algebra, then the sequence

$$0 o J \otimes_{\min} C o A \otimes_{\min} C o A/J \otimes_{\min} C o 0$$

is exact for every closed two-sided ideal J of A and every C*-algebra C.

Theorem (Effros-Haagerup)

Let B be a C*-algebra and J a closed two sided ideal of B. If A := B/J has the local lifting property, then the sequence

$$0 \to J \otimes_{\min} C \to B \otimes_{\min} C \to A \otimes_{\min} C \to 0$$

is exact for every C^* -algebra C.

Theorem (Wasserman)

The sequence

 $0 \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{J} \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*(\mathbb{F}_2) \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}(\mathbb{F}_2) \to 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is not exact, where J is the kernel of $C^*(\mathbb{F}_2) \to C^*_r(\mathbb{F}_2)$.

Theorem (Wasserman)

The sequence

 $0 \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{J} \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*(\mathbb{F}_2) \to \mathrm{C}^*(\mathbb{F}_2) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}(\mathbb{F}_2) \to 0$

is not exact, where J is the kernel of $C^*(\mathbb{F}_2) \to C^*_r(\mathbb{F}_2)$.

Corollary

 $\mathrm{C}^*(\mathbb{F}_2)$ is not locally reflexive and $\mathrm{C}^*_r(\mathbb{F}_2)$ does not have the LLP.

Theorem (W.)

Let ${\it G}$ be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

 $0 \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{K} \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*({\mathcal{G}}) \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}({\mathcal{G}}) \to 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is not exact, where K is the kernel of $C^*(G) \to C^*_r(G)$.

Theorem (W.)

Let G be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

$$0 \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{K} \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*({\mathcal{G}}) \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}({\mathcal{G}}) \to 0$$

is not exact, where K is the kernel of $C^*(G) \to C^*_r(G)$.

Key Fact: $(\operatorname{Ind}_{F_2 \times \mathbb{F}_2}^{G \times G} \pi)|_{\mathbb{F}_2 \times \mathbb{F}_2}$ weakly contains π for every representation π of $\mathbb{F}_2 \times \mathbb{F}_2$.

Theorem (W.)

Let G be a QSIN group which contains \mathbb{F}_2 as a closed subgroup. Then

$$0 \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{K} \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*({\mathcal{G}}) \to \mathrm{C}^*({\mathcal{G}}) \otimes_{\mathsf{min}} \mathrm{C}^*_\mathrm{r}({\mathcal{G}}) \to 0$$

is not exact, where K is the kernel of $C^*(G) \to C^*_r(G)$.

Key Fact: $(\operatorname{Ind}_{F_2 \times \mathbb{F}_2}^{G \times G} \pi)|_{\mathbb{F}_2 \times \mathbb{F}_2}$ weakly contains π for every representation π of $\mathbb{F}_2 \times \mathbb{F}_2$.

Corollary

If G is QSIN and contains \mathbb{F}_2 as a closed subgroup, then $C^*(G)$ is not locally reflexive and $C^*_r(G)$ does not have the LLP.

Thank you!