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Introduction

Markov processes, are defined in terms of independence.
Mixingales4 are processes which exhibit
independence/conditional independence in the limit.
Mixing processes are dependent stochastic processes in
which measures of independence (the so called mixing
coefficients) are use to deduce structure.5 6

In this talk we will be concerned with two such mixing
coefficients: the strong or α mixing coefficient and the
uniform or ϕ mixing coefficient.

4
W.-C. KUO, J.J. VARDY, B.A. WATSON, Mixingales on Riesz spaces, J. Math. Anal. Appl., 402 (2013),

731-738.
5

P.P. BILLINGSLEY, Probability and Measure, John Wiley and Sons, 3rd edition, 1995.
6

P. DOUKHAN, Mixing: properties and examples, Lecture Notes in Statistics, 85 (1994), 15-23.
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The strong or α mixing coefficient in a probability
space

Let (Ω,F , µ) be a probability space and A and B be
sub-σ-algebras of F .

The strong mixing coefficient between A and B is

α(A,B) = sup{|µ(A ∩ B)− µ(A)µ(B)| |A ∈ A,B ∈ B}. (1)

The observation that µ(A) = E[IA|{φ,Ω}] leads one the
following definition for a conditional strong mixing
coefficient. If C is a sub-σ-algebra of A ∩ B then the
C-conditioned strong mixing coefficient of A and B is

αC(A,B) = sup{|E[IAIB|C]− E[IA|C]E[IB|C] |A ∈ A,B ∈ B]. (2)
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The uniform or ϕ mixing coefficient in a probability
space

Let (Ω,F , µ) be a probability space and A and B be
sub-σ-algebras of F .

The uniform mixing coefficient between A and B is

ϕ(A,B) = sup{|µ(B|A)− µ(B)| |A ∈ A,B ∈ B, µ(A) > 0}. (3)

The uniform mixing coefficient between A and B is

ϕ(A,B) = sup{|µ(B|A)− µ(B)| |A ∈ A,B ∈ B, µ(A) > 0}. (4)

Lemma

Let (Ω,F , µ) be a probability space and A and B be
sub-σ-algebras of F , then

ϕ(A,B) = sup
B∈B
‖E[IB − E[IB]|A]‖∞.
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The mixing coefficients

For both the strong and uniform mixing coefficients we
have that the coefficient is zero if and only if the σ-algebras
A and B are independent.
Both mixing coefficients lie in the interval [0, 1].
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The mixing inequalities

In the probability space (Ω,F , µ) if f is F measurable then
for 1 ≤ p ≤ r ≤ ∞ we have

‖E[f |B]− E[f ]‖p ≤ 2[ϕ(B,F)]1−1/r‖f‖r,

‖E[f |B]− E[f ]‖p ≤ (21/p + 1)[α(B,F)]1/p−1/r‖f‖r.

First proved by Ibragimov11

Using these inequalities McLeisch12 showed that mixing
processes (with some extra conditions) asymptotically
approach a Brownian motion.
Serfling13 used these inequalities to give a central limit
theorem for mixing processes.

11I.A. IBRAGIMOV, Some limit theorems for stationary processes, Theory
Probab. Appl., 7 (1962), 349-382.

12D.L. MCLEISH, A maximal inequality and dependent strong laws, Ann.
Probab., 3 (1975), 829-839.

13R.J. SERFLING, Contributions to central limit theory for dependent
variables, Ann. Math. Stat., 39 (1968), 1158-1175.
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Conditional expectation operators in Riesz spaces

Let E be a Dedekind complete Riesz space with weak order
unit. If

T is a positive order continuous linear projection T on E

R(T) is a Dedekind complete Riesz subspace of E

Te is a weak order unit of E for each weak order unit e of E

then T is said to be a conditional expectation operator on E.
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Maximal extensions

We say that a conditional expectation operator, T, on a
Riesz space is strictly positive if T|f | = 0 implies that f = 0.
It was shown16 that a strictly positive conditional
expectation operator, T, on a Riesz space, E, admits a
unique maximal extension to a conditional expectation
operator, also denoted T, in the universal completion, Eu,
of E, with domain a Dedekind complete Riesz space, which
will be denoted L1(T).
The procedure used there was based on that of de Pagter
and Grobler, 17, for the measure theoretic setting.
If (Ω,F , µ) is a probability space and Tf if the a.e. constant
function

∫
Ω f dµ then L1(T) = L1(Ω,F , µ) if IA ∈ E for all

A ∈ F .
16

W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional expectations on Riesz spaces, J. Math. Anal.
Appl., 303 (2005), 509-521.

17
J.J. GROBLER, B. DE PAGTER, Operators representable as multiplication-conditional expectation operators, J.

Operator Theory, 48 (2002), 15-40.
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L1(T) as an R(T)-module

Let R(T) denote the range of the maximal extension of the
conditional expectation operator, i.e.
R(T) := {Tf | f ∈ L1(T)}.
R(T) is a universally complete f -algebra. For the measure
version see 19.
L1(T) is an R(T)-module. For the measure version see 20.
This prompts the definition of an R(T) (vector valued) norm
‖ · ‖T,1 := T| · | on L1(T). Here the homogeneity is with
respect to multiplication by elements of R(T)+.

19
J.J. GROBLER, B. DE PAGTER, Operators representable as multiplication-conditional expectation operators, J.

Operator Theory, 48 (2002), 15-40.
20

S. CERREIA-VIOGLIO, M. KUPPER, F. MACCHERONI, M. MARINACCI, N. VOGELPOTH, Conditional Lp-spaces
and the duality of modules over f-algebras, J. Math. Anal. Appl., (2016), in press

Wen-Chi Kuo, Michael Rogans & Bruce A. Watson Mixing inequalities in Riesz spaces21



R(T) valued norms

Definition

Let E be a Dedekind complete Riesz space with weak order
unit and T be a strictly positive conditional expectation operator
on E. If E is an R(T)-module and φ : E → R(T)+ with

(a) φ(f ) = 0 if and only if f = 0,
(b) φ(gf ) = |g|φ(f ) for all f ∈ E and g ∈ R(T),
(c) φ(f + h) ≤ φ(f ) + φ(h) for all f , h ∈ E,

then φ will be called an R(T)-valued norm on E.
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L∞(T)

We take L∞(T) to be the subspace of L1(T) composed of
R(T) bounded elements, i.e.

L∞(T) := {f ∈ L1(T) | |f | ≤ g, for some g ∈ R(T)+}.

The map

f 7→ ‖f‖T,∞ := inf{g ∈ R(T)+ | |f | ≤ g},

for f ∈ L∞(T) defines an R(T) valued norm on L∞(T).
This extends on the concepts of L∞(T) defined in 23.
T is an averaging operator in the sense that if f ∈ R(T) and
g ∈ E with fg ∈ E then T(fg) = fT(g).

23
C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete stochastic integration in Riesz spaces, Positivity, 14 (2010),

859-875.
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Some inequalities

Theorem (Hölders’s Inequality)

If f ∈ L1(T) and g ∈ L∞(T), then gf ∈ L1(T) and

‖gf‖T,1 ≤ ‖g‖T,∞‖f‖T,1.

Theorem (Jensen’s Inequality)

If S is a conditional expectation operator on L1(T) compatible T
(in the sense that TS = T = ST), then

‖Sf‖T, p ≤ ‖f‖T,p,

for all f ∈ Lp(T), p = 1,∞.
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Mixing coefficients in Riesz spaces

Let E be a Dedekind complete Riesz space with weak order
unit, say e, and conditional expectation operator, T, with Te = e.

If U is a conditional expectation operators on E, with
TU = T = UT, then we say that U is compatible with T.
If U is a conditional expectation on E compatible with T
then we denote by B(U) the set of band projections P on E
with Pe ∈ R(U).
We define the T-conditioned strong mixing coefficient with
respect to the conditional expectation operators U and V
on E compatible with T, by

αT(U,V) := sup{|TPQe− TPe · TQe| |P ∈ B(U),Q ∈ B(V)}.

Let U and V be conditional expectation operators on E
compatible with T, then

ϕT(U,V) = sup
Q∈B(V)

‖UQe− TQe‖T,∞.
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Mixing inequalities in Riesz spaces

Let E be a T-universally complete Riesz space, E = L1(T),
where T is a conditional expectation operator on E where E
has a weak order unit, say e, with Te = e.
Let U and V be conditional expectation operators on E
compatible with T.
Then for f ∈ R(V) ∩ L∞(T), we have

‖Uf − Tf‖T,1 ≤ 4αT(U,V)‖f‖T,∞,

‖Uf − Tf‖T,1 ≤ ‖Uf − Tf‖T,∞ ≤ 2ϕT(U,V)‖f‖T,∞.

For proofs see JMAA online first or Arxiv ....
Using the mixing inequalities above, Riesz space mixing
processes can be connected to Riesz space mixingales27

and thus obey a law of large numbers.
27W.-C. KUO, J.J. VARDY, B.A. WATSON, Mixingales on Riesz spaces, J.

Math. Anal. Appl., 402 (2013), 731-738.
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Application to σ-finite processes

A consideration of σ-finite processes in the context of
martingale theory can be found in the work of Dellacherie
and Meyer, 29.
Let (Ω,A, µ) be a σ-finite measure space, which to be
interesting should have µ(Ω) =∞, and let (Ωi)i∈N be a
µ-measurable partition of Ω into sets of finite positive
measure.
Let A0 be the sub-σ-algebra of A generated by (Ωi)i∈N. We
take the Riesz space E = L∞(Ω,A, µ) and the conditional
expectation operator T = E[ · |A0].
For f ∈ E we have

Tf (ω) =

∫
Ωi

f dµ

µ(Ωi)
, for ω ∈ Ωi. (5)

29Sections 39, 42 and 43 of C. DELLACHERIE, P.-A. MEYER, Probabilities
and Potentials: B, Theory of Martingales, North Holland Publishing Company,
1982.
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Application to σ-finite processes - spaces

The universal completion, Eu, of E is the space of all
A-measurable functions.
The T-universal completion of E is the space

L1(T) =

{
f ∈ Eu

∣∣∣∣ ∫
Ωi

|f | dµ <∞ for all i ∈ N
}
,

which is characterized by f |Ωi ∈ L1(Ω,A, µ), for each i ∈ N.
Here T can be extended to an L1(T) conditional
expectation operator as per (5).
The space E has a weak order unit e = 1, the function
identically 1 on Ω, which again is a weak order unit for
L1(T), but is not in L1(Ω,A, µ).
The range of the generalized conditional expectation
operator T is

R(T) = {f ∈ Eu | f a.e. constant on Ωi, i ∈ N} ,

which is an f -algebra.
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Application to σ-finite processes - vector norms

The last of the spaces to be considered is

L∞(T) = {f ∈ Eu | f essentially bounded on Ωi for each i ∈ N} .

The vector norms on L1(T) and L∞(T) are

‖f‖T,1(ω) = T|f |(ω) =

∫
Ωi
|f | dµ

µ(Ωi)
, for ω ∈ Ωi, f ∈ L1(T),(6)

‖f‖T,∞(ω) = ess supΩi
|f |, for ω ∈ Ωi, f ∈ L∞(T). (7)

Note that L1(Ω,A, µ) ( L1(T), L∞(Ω,A, µ) ( L∞(T),
L∞(T) ⊂ L1(T) while L∞(Ω,A, µ) 6⊂ L1(Ω,A, µ).
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Application to σ-finite processes - conditioning

Let C and D be sub-σ-algebras of A which contain A0.
The α-mixing coefficient of C and D conditioned on A0
(which in measure theoretic terms could be denote
αA0(C,D) is αT(U,V).
Here U and V are the restrictions to L1(T) of the
extensions to L1(U) and L1(V) respectively of the
conditional expectation operators U and V on E
conditioning with respect to the σ-algebras C and D.
Explicitly

U(f ) =

∞∑
i=1

Ei[f IΩi |C], (8)

V(f ) =
∞∑

i=1

Ei[f IΩi |D], (9)

for f ∈ L1(T).
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Application to σ-finite processes - α

The conditional expectation Ei[f IΩi |C] = Ei[f |C] is the
conditional expectation on Ωi of f |Ωi with respect to the
probability measure µi(A) := µ(A∩Ωi)

µ(Ωi)
and the σ-algebra

{C ∩ Ωi|C ∈ C}, and similarly for C replaced by D.
Explicitly

αT(U,V) = αA0(C,D) =

∞∑
i=1

αi(C,D)IΩi ,

where αi(C,D) is the α-mixing coefficient of σ-algebras C
and D with respect to the probability measure µi.
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Application to σ-finite processes - α inequality

For g is µ-measurable and essential bounded on each
Ωi, i ∈ N, we have

‖UVg− Tg‖T,1 ≤ 4αT(U,V)‖g‖T,∞,

which in this example case can be written as, for each
i ∈ N,

1
µ(Ωi)

∫
Ωi

∣∣∣∣Ei[Ei[g|D]|C]− 1
µ(Ωi)

∫
Ωi

g dµ
∣∣∣∣ dµ ≤ 4αi(C,D)ess supΩi

|g|
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Application to σ-finite processes - ϕ

The conditional uniform mixing coefficient is given by

ϕT(U,V) = ϕA0(C,D) =

∞∑
i=1

ϕi(C,D)IΩi ,

where ϕi(C,D) is the ϕ-mixing coefficient of C and D
relative to the probability measure µi.
For g is µ-measurable and essential bounded on each
Ωi, i ∈ N, we have

‖UVg− Tg‖T,∞ ≤ 2ϕT(U,V)‖g‖T,∞.

Explicitly

∣∣∣∣Ei[Ei[g|D]|C]− 1
µ(Ωi)

∫
Ωi

g dµ
∣∣∣∣ ≤ 2ϕi(C,D) ess sup Ωi

|g|.
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End

THANK YOU
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