Amenability of locally compact quantum groups and their unitary co-representations

Ami Viselter

University of Haifa

Positivity IX, University of Alberta July 17, 2017

Ami Viselter (University of Haifa)

Amenability of LCQGs

A .

4 1 1 1 4

G – a locally compact group.

Definition

A mean on G is a state $m \in L^{\infty}(G)^*$ (that is: $m(x) \ge 0$ when $x \ge 0$ and $m(\mathbb{1}) = 1$).

A mean *m* is left invariant if $m(L_t x) = m(x)$ for all $x \in L^{\infty}(G)$ and $t \in G$. *G* is amenable if it has a left invariant mean.

Examples (and non-examples)

- Every compact group is amenable: use the Haar measure!
- Every abelian (or even solvable) group is amenable
 - Markov–Kakutani fixed point theorem
- Every locally-finite group is amenable
- ④ \mathbb{F}_n is *not* amenable for all $n \ge 2$.

G – a locally compact group.

Definition

A mean on *G* is a state $m \in L^{\infty}(G)^*$ (that is: $m(x) \ge 0$ when $x \ge 0$ and $m(\mathbb{1}) = 1$). A mean *m* is left invariant if $m(L_t x) = m(x)$ for all $x \in L^{\infty}(G)$ and $t \in G$. *G* is amenable if it has a left invariant mean.

Examples (and non-examples)

- Every compact group is amenable: use the Haar measure!
- 2 Every abelian (or even solvable) group is amenable
 - Markov–Kakutani fixed point theorem
- Every locally-finite group is amenable
- ④ \mathbb{F}_n is *not* amenable for all $n \ge 2$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

G – a locally compact group.

Definition

A mean on *G* is a state $m \in L^{\infty}(G)^*$ (that is: $m(x) \ge 0$ when $x \ge 0$ and m(1) = 1). A mean *m* is left invariant if $m(L_t x) = m(x)$ for all $x \in L^{\infty}(G)$ and $t \in G$. *G* is amenable if it has a left invariant mean.

Examples (and non-examples)

- Every compact group is amenable: use the Haar measure!
- 2 Every abelian (or even solvable) group is amenable
 - Markov–Kakutani fixed point theorem
- Every locally-finite group is amenable
- ④ \mathbb{F}_n is *not* amenable for all $n \ge 2$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

G – a locally compact group.

Definition

A mean on G is a state $m \in L^{\infty}(G)^*$ (that is: $m(x) \ge 0$ when $x \ge 0$ and m(1) = 1). A mean m is left invariant if $m(L_t x) = m(x)$ for all $x \in L^{\infty}(G)$ and $t \in G$. G is amenable if it has a left invariant mean.

Examples (and non-examples)

- Every compact group is amenable: use the Haar measure!
- Every abelian (or even solvable) group is amenable
 - Markov–Kakutani fixed point theorem
- Severy locally-finite group is amenable
 - **9** \mathbb{F}_n is *not* amenable for all $n \ge 2$.

э

Numerous equivalent characterizations:

G is amenable \iff ...

• topological amenability: there is a mean $m \in L^{\infty}(G)^*$ with

 $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G), \omega \in L^{1}(G)$

Leptin's theorem: VN(G)_∗ has a left bounded approximate identity
 here VN(G) := ⟨λ_g : g ∈ G⟩ ⊆ B(L²(G)) and VN(G)_∗ ≅ A(G).

[But also: means on algebras other than $L^{\infty}(G)$, Hulanicki's theorem, Folner's condition, Reiter's condition(s), Rickert's theorem, etc...]

< ロ > < 同 > < 回 > < 回 >

Numerous equivalent characterizations:

G is amenable \iff ...

• topological amenability: there is a mean $m \in L^{\infty}(G)^*$ with

 $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G), \omega \in L^{1}(G)$

Leptin's theorem: VN(G)_∗ has a left bounded approximate identity
 here VN(G) := ⟨λ_g : g ∈ G⟩ ⊆ B(L²(G)) and VN(G)_∗ ≅ A(G).

But also: means on algebras other than $L^{\infty}(G)$, Hulanicki's theorem, Folner's condition, Reiter's condition(s), Rickert's theorem, etc...]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerous equivalent characterizations:

G is amenable \iff ...

• topological amenability: there is a mean $m \in L^{\infty}(G)^*$ with

 $m(\omega * x) = \omega(\mathbb{1})m(x)$ for all $x \in L^{\infty}(G), \omega \in L^{1}(G)$

• Leptin's theorem: $VN(G)_*$ has a left bounded approximate identity

▶ here $VN(G) := \langle \lambda_g : g \in G \rangle \subseteq B(L^2(G))$ and $VN(G)_* \cong A(G)$.

[But also: means on algebras other than $L^{\infty}(G)$, Hulanicki's theorem, Folner's condition, Reiter's condition(s), Rickert's theorem, etc...]

3

Theorem (Lance, '73)

- G is amenable $\implies C_r^*(G)$ is nuclear
- If G is discrete, the converse also holds
 - (but not generally).

The reduced group C^* -algebra $C^*_r(G)$

Recall: $(\lambda_g)_G$ is the left regular rep of G on $L^2(G)$. $C_r^*(G) := \overline{\left\{\int_G f(t)\lambda_t \, \mathrm{dt} : f \in C_c(G)\right\}}^{\|\cdot\|} \subseteq \langle \lambda_g : g \in G \rangle =: \mathrm{VN}(G).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Lance, '73)

- G is amenable $\implies C_r^*(G)$ is nuclear
- If G is discrete, the converse also holds
 - (but not generally).

The reduced group C^* -algebra $C^*_r(G)$

Recall: $(\lambda_g)_G$ is the left regular rep of G on $L^2(G)$. $C_r^*(G) := \overline{\left\{\int_G f(t)\lambda_t \, \mathrm{dt} : f \in C_c(G)\right\}}^{\|\cdot\|} \subseteq \langle \lambda_g : g \in G \rangle =: \mathrm{VN}(G).$

Ami Viselter (University of Haifa)

Amenability of LCQGs

Positivity IX, U of A 4 / 18

Definition

A C*-algebra A is nuclear if

"the identity map A \rightarrow A approximately factors through fin-dim algebras via CP contractions",

that is: there are nets (n_{α}) in \mathbb{N} and (S_{α}) , (T_{α}) of completely positive contractions

and $(T_{\alpha} \circ S_{\alpha})(x) \xrightarrow{\alpha} x$ for every $x \in A$.

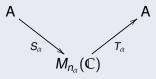
э

Definition

A C*-algebra A is nuclear if

"the identity map A \rightarrow A approximately factors through fin-dim algebras via CP contractions",

that is: there are nets (n_{α}) in \mathbb{N} and (S_{α}) , (T_{α}) of completely positive contractions



and $(T_{\alpha} \circ S_{\alpha})(x) \xrightarrow{\alpha} x$ for every $x \in A$.

э

A is nuclear \iff A^{**} is injective \iff every representation of A generates an injective vN alg.

Recall: by Lance, G is amenable $\implies C_r^*(G)$ is nuclear, but the converse does not always hold.

Question

Find a characterization of amenability involving nuclearity that always works.

Several similar characterizations involving injectivity were found recently (Soltan–V, Crann–Neufang, Crann).

Theorem (C.-K. Ng, '15)

G – locally compact group

A is nuclear \iff A^{**} is injective \iff every representation of A generates an injective vN alg.

Recall: by Lance, G is amenable $\implies C_r^*(G)$ is nuclear, but the converse does not always hold.

Question

Find a characterization of amenability involving nuclearity that always works.

Several similar characterizations involving injectivity were found recently (Soltan–V, Crann–Neufang, Crann).

Theorem (C.-K. Ng, '15)

G – locally compact group.

A is nuclear \iff A^{**} is injective \iff every representation of A generates an injective vN alg.

Recall: by Lance, G is amenable $\implies C_r^*(G)$ is nuclear, but the converse does not always hold.

Question

Find a characterization of amenability involving nuclearity that always works.

Several similar characterizations involving injectivity were found recently (Soltan–V, Crann–Neufang, Crann).

Theorem (C.-K. Ng, '15)

G – locally compact group.

A is nuclear \iff A^{**} is injective \iff every representation of A generates an injective vN alg.

Recall: by Lance, G is amenable $\implies C_r^*(G)$ is nuclear, but the converse does not always hold.

Question

Find a characterization of amenability involving nuclearity that always works.

Several similar characterizations involving injectivity were found recently (Soltan–V, Crann–Neufang, Crann).

Theorem (C.-K. Ng, '15)

G – locally compact group.

A group as a quantum group

- G a locally compact group.
 - The von Neumann algebra $L^{\infty}(G)$.
 - Co-multiplication: the *-homomorphism

$$\Delta: L^{\infty}(G) \to L^{\infty}(G) \overline{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$$

defined by

$$(\Delta(f))(t,s) := f(ts) \qquad (f \in L^{\infty}(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \to [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

Motivation for quantum groups

Lack of Pontryagin duality for non-Abelian l.c. groups.

Ami Viselter (University of Haifa)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A group as a quantum group

- G a locally compact group.
 - The von Neumann algebra $L^{\infty}(G)$.
 - O-multiplication: the *-homomorphism

$$\Delta: L^{\infty}(G) \to L^{\infty}(G) \overline{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$$

defined by

$$(\Delta(f))(t,s) := f(ts) \qquad (f \in L^{\infty}(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \to [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

Motivation for quantum groups

Lack of Pontryagin duality for non-Abelian I.c. groups.

Ami Viselter (University of Haifa)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Locally compact quantum groups

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② Δ : *M* → *M* ⊗ *M* is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$

Solution 3 There are two n.s.f. weights φ, ψ on M (the Haar weights) with:

- $\varphi((\omega \otimes \mathrm{id})\Delta(x)) = \omega(\mathbb{1})\varphi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\varphi(x) < \infty$
- $\psi((\mathrm{id} \otimes \omega)\Delta(x)) = \omega(\mathbb{1})\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. $L^{\infty}(\mathbb{G})_*$ becomes a Banach algebra by $\omega * \rho := (\omega \otimes \rho) \circ \Delta$. $C_0(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$: canonical weakly dense C^* -algebra.

Locally compact quantum groups

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② $\Delta : M \to M \overline{\otimes} M$ is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$

Solution 3 There are two n.s.f. weights φ, ψ on M (the Haar weights) with:

- $\varphi((\omega \otimes \mathrm{id})\Delta(x)) = \omega(\mathbb{1})\varphi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\varphi(x) < \infty$
- $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(\mathbb{1})\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. $L^{\infty}(\mathbb{G})_*$ becomes a Banach algebra by $\omega * \rho := (\omega \otimes \rho) \circ \Delta$. $C_0(\mathbb{G}) \subseteq L^{\infty}(\mathbb{G})$: canonical weakly dense C^* -algebra.

Locally compact quantum groups

Rich structure theory, including an unbounded antipode and duality $\mathbb{G} \mapsto \hat{\mathbb{G}}$ within the category satisfying $\hat{\mathbb{G}} = \mathbb{G}$.

Example (commutative LCQGs: G = G)

 $L^{\infty}(\mathbb{G}) = L^{\infty}(\mathbb{G})$ $C_0(\mathbb{G}) = C_0(\mathbb{G})$

Example (co-commutative LCQGs: $\mathbb{G} = \hat{G}$)

The dual \hat{G} of G (as a LCQG) has

•
$$L^{\infty}(\mathbb{G}) = \mathrm{VN}(G)$$

 $C_0(\mathbb{G}) = C_r^*(G)$

• $\Delta : \mathrm{VN}(G) \to \mathrm{VN}(G) \overline{\otimes} \mathrm{VN}(G)$ given by $\Delta(\lambda_g) := \lambda_g \otimes \lambda_g$

• $\varphi = \psi =$ the Plancherel weight on VN(*G*).

If G is Abelian, \hat{G} is its Pontryagin dual (up to unitary equivalence).

Recall: a group *G* is amenable \iff there is a mean $m \in L^{\infty}(G)^*$ with $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G)$ and $\omega \in L^1(G) \cong L^{\infty}(G)_*$.

Definition

A LCQG G is amenable if there is a state $m \in L^{\infty}(G)^*$ such that

$$m(\underbrace{(\mathrm{id}\otimes\omega)(\Delta(x))}_{})=\omega(\mathbb{1})m(x)\qquad (\forall x\in L^{\infty}(\mathbb{G}),\omega\in L^{\infty}(\mathbb{G})_{*}).$$

 $\omega * X$

Recall Leptin's theorem: a group G is amenable \iff VN(G)_{*} has a left bounded approximate identity.

Definition

A LCQG G is strongly amenable if $L^{\infty}(\hat{G})_*$ has a left bounded approximate identity.

Ami Viselter (University of Haifa)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recall: a group *G* is amenable \iff there is a mean $m \in L^{\infty}(G)^*$ with $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G)$ and $\omega \in L^1(G) \cong L^{\infty}(G)_*$.

Definition

A LCQG \mathbb{G} is amenable if there is a state $m \in L^{\infty}(\mathbb{G})^*$ such that

$$m(\underbrace{(\mathrm{id}\otimes\omega)(\Delta(x))}) = \omega(\mathbb{1})m(x) \qquad (\forall x\in L^{\infty}(\mathbb{G}), \omega\in L^{\infty}(\mathbb{G})_{*}).$$

 $\omega * X$

Recall Leptin's theorem: a group G is amenable \iff VN(G)_{*} has a left bounded approximate identity.

Definition

A LCQG G is strongly amenable if $L^{\infty}(\hat{G})_*$ has a left bounded approximate identity.

Ami Viselter (University of Haifa)

< ロ > < 同 > < 回 > < 回 >

Recall: a group *G* is amenable \iff there is a mean $m \in L^{\infty}(G)^*$ with $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G)$ and $\omega \in L^1(G) \cong L^{\infty}(G)_*$.

Definition

A LCQG \mathbb{G} is amenable if there is a state $m \in L^{\infty}(\mathbb{G})^*$ such that

$$m(\underbrace{(\mathrm{id}\otimes\omega)(\Delta(x))}_{\omega*X}) = \omega(\mathbb{1})m(x) \qquad (\forall x\in L^{\infty}(\mathbb{G}), \omega\in L^{\infty}(\mathbb{G})_{*}).$$

Recall Leptin's theorem: a group G is amenable \iff VN(G)_{*} has a left bounded approximate identity.

Definition

A LCQG G is strongly amenable if $L^{\infty}(\hat{G})_*$ has a left bounded approximate identity.

Ami Viselter (University of Haifa)

< ロ > < 同 > < 回 > < 回 >

Recall: a group *G* is amenable \iff there is a mean $m \in L^{\infty}(G)^*$ with $m(\omega * x) = \omega(1)m(x)$ for all $x \in L^{\infty}(G)$ and $\omega \in L^1(G) \cong L^{\infty}(G)_*$.

Definition

A LCQG \mathbb{G} is amenable if there is a state $m \in L^{\infty}(\mathbb{G})^*$ such that

$$m(\underbrace{(\mathrm{id}\otimes\omega)(\Delta(x))}_{\omega*x}) = \omega(\mathbb{1})m(x) \qquad (\forall x \in L^{\infty}(\mathbb{G}), \omega \in L^{\infty}(\mathbb{G})_{*}).$$

Recall Leptin's theorem: a group G is amenable \iff VN(G)_{*} has a left bounded approximate identity.

Definition

A LCQG G is strongly amenable if $L^{\infty}(\hat{G})_*$ has a left bounded approximate identity.

Ami Viselter (University of Haifa)

Amenability of LCQGs

Positivity IX, U of A 10 / 18

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

At least one side of Leptin's theorem is true:

Theorem (Bédos-Tuset, '03)

If \mathbb{G} is strongly amenable, then it is amenable.

The converse is open even for Kac algebras.

A D M A A A M M

G – locally compact quantum group.

All information on \mathbb{G} is encoded in a unitary $W \in M(C_0(\mathbb{G}) \otimes_{\min} C_0(\hat{\mathbb{G}}))$ satisfying

 $\Delta(x) = W^*(\mathbb{1} \otimes x)W \qquad (\forall x \in L^\infty(\mathbb{G})).$

Example

If $\mathbb{G} = G$, then $W \in \mathsf{M}(C_0(G) \otimes_{\min} C^*_r(G)) \cong C_b(G, \mathsf{M}(C^*_r(G)))$ given by

 $g\mapsto \lambda_g \qquad (g\in G).$

Ami Viselter (University of Haifa)

3 > 4 3

A D M A A A M M

Recall Ng's Theorem:

Theorem

G – locally compact group.

G is amenable $\iff C_r^*(G)$ is nuclear and has a tracial state.

Main Theorem 1 (Ng–V., '17)

G – LCQG. Consider the following conditions:

G is strongly amenable;

C₀(Ĝ) is nuclear, and there is a state ρ on C₀(Ĝ) that is invariant under the left action of G on C₀(Ĝ):

$$(\mathrm{id}\otimes\rho)(W^*(\mathbb{1}\otimes x)W)=\rho(x)\mathbb{1}$$
 $(\forall x\in C_0(\hat{\mathbb{G}}));$

G is amenable.

Then $1 \Longrightarrow 2 \Longrightarrow 3$.

Ami Viselter (University of Haifa)

Recall Ng's Theorem:

Theorem

G – locally compact group.

G is amenable $\iff C_r^*(G)$ is nuclear and has a tracial state.

Main Theorem 1 (Ng-V., '17)

- $\mathbb{G}-\text{LCQG}.$ Consider the following conditions:
 - G is strongly amenable;

C₀(Ĝ) is nuclear, and there is a state ρ on C₀(Ĝ) that is invariant under the left action of G on C₀(Ĝ):

$$(\mathrm{id}\otimes\rho)(W^*(\mathbb{1}\otimes x)W)=\rho(x)\mathbb{1}\qquad (\forall x\in C_0(\hat{\mathbb{G}}));$$

G is amenable.

Then $1 \Longrightarrow 2 \Longrightarrow 3$.

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$,

thus, for $x \in C^*_r(G), W^*(1 \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes
ho)(W^*(\mathbb{1}\otimes x)W)=
ho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes\rho)(W^*(\mathbb{1}\otimes x)W)=\rho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes\rho)(W^*(\mathbb{1}\otimes x)W)=\rho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes
ho)(W^*(\mathbb{1}\otimes x)W)=
ho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

 $\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes
ho)\left(W^{*}(\mathbb{1}\otimes x)W
ight) =
ho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes
ho)\left(W^{*}(\mathbb{1}\otimes x)W
ight) =
ho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Case $\mathbb{G} = G$

W corresponds to the function $g \mapsto \lambda_g$, thus, for $x \in C^*_r(G), W^*(\mathbb{1} \otimes x)W$ corresponds to the func. $g \mapsto \lambda^*_g x \lambda_g$, hence the condition

$$(\mathrm{id}\otimes
ho)\left(W^{*}(\mathbb{1}\otimes x)W
ight) =
ho(x)\mathbb{1}$$

means that $\rho \in C_r^*(G)^*$ satisfies

$$\rho(\lambda_g^* x \lambda_g) = \rho(x) \qquad (\forall g \in G),$$

that is, ρ is tracial.

Case G is discrete

The Haar state of $\hat{\mathbb{G}}$ satisfies the invariance condition $\iff \mathbb{G}$ is Kac (Izumi, '02).

Ami Viselter (University of Haifa)

Recall our result:

Main Theorem 1 (Ng-V.)

 \mathbb{G} – LCQG. Consider the following conditions:

- G is strongly amenable;
- 2 $C_0(\hat{\mathbb{G}})$ is nuclear, and there is a state ρ on $C_0(\hat{\mathbb{G}})$ that is invariant under the left action of \mathbb{G} on $C_0(\hat{\mathbb{G}})$;
- G is amenable.

Then $1 \Longrightarrow 2 \Longrightarrow 3$.

Main Theorem 2 (Crann, '17, yet unpublished)

We have $1 \iff 2$.

We emphasize that his proof uses our implication $2 \Longrightarrow 3$ to deduce 1 from 2.

-

Recall our result:

Main Theorem 1 (Ng-V.)

 \mathbb{G} – LCQG. Consider the following conditions:

- G is strongly amenable;
- 2 $C_0(\hat{\mathbb{G}})$ is nuclear, and there is a state ρ on $C_0(\hat{\mathbb{G}})$ that is invariant under the left action of \mathbb{G} on $C_0(\hat{\mathbb{G}})$;
- G is amenable.

Then $1 \Longrightarrow 2 \Longrightarrow 3$.

Main Theorem 2 (Crann, '17, yet unpublished)

We have $1 \iff 2$.

We emphasize that his proof uses our implication $2 \Longrightarrow 3$ to deduce 1 from 2.

Recall our result:

Main Theorem 1 (Ng-V.)

 \mathbb{G} – LCQG. Consider the following conditions:

- G is strongly amenable;
- 2 $C_0(\hat{\mathbb{G}})$ is nuclear, and there is a state ρ on $C_0(\hat{\mathbb{G}})$ that is invariant under the left action of \mathbb{G} on $C_0(\hat{\mathbb{G}})$;
- G is amenable.

Then $1 \Longrightarrow 2 \Longrightarrow 3$.

Main Theorem 2 (Crann, '17, yet unpublished)

We have $1 \iff 2$.

We emphasize that his proof uses our implication $2 \implies 3$ to deduce 1 from 2.

- Implication $1 \Longrightarrow 2$ is easy.
- For 2 \implies 3, consider the following:

Definition and Theorem (Bekka, '90, Inventiones)

G – locally compact group.

Def. A representation π of G on \mathcal{H} is amenable if there exists a G-invariant mean on $B(\mathcal{H})$: a state $m \in B(\mathcal{H})^*$ such that $m(\pi_g^* x \pi_g) = m(x)$ for all $x \in B(\mathcal{H}), g \in G$.

Thm. If $\pi_1 \leq \pi_2$ and π_1 is amenable, so is π_2 .

∃ ► 4 Ξ

- Implication $1 \Longrightarrow 2$ is easy.
- For 2 \implies 3, consider the following:

Definition and Theorem (Bekka, '90, Inventiones)

G – locally compact group.

Def. A representation π of G on \mathcal{H} is amenable if there exists a G-invariant mean on $B(\mathcal{H})$: a state $m \in B(\mathcal{H})^*$ such that $m(\pi_g^* x \pi_g) = m(x)$ for all $x \in B(\mathcal{H}), g \in G$.

Thm. If $\pi_1 \leq \pi_2$ and π_1 is amenable, so is π_2 .

Bédos, Conti and Tuset ('03 and '05) extended Bekka's definition for LCQG representations. They asked:

Question

Is Bekka's theorem true for LCQGs?

They were able to give partial answers.

Theorem (Ng–V., '17)

The Bédos–Conti–Tuset question has an affirmative answer.

Proof of Main Theorem 1, implication $2 \implies 3$

• Amenability of G is equivalent to that of W.

• Use ρ to find an amenable representation $W_{\rho} \leq W$.

Bédos, Conti and Tuset ('03 and '05) extended Bekka's definition for LCQG representations. They asked:

Question

Is Bekka's theorem true for LCQGs?

They were able to give partial answers.

Theorem (Ng-V., '17)

The Bédos–Conti–Tuset question has an affirmative answer.

Proof of Main Theorem 1, implication $2 \implies 3$

• Amenability of G is equivalent to that of W.

• Use ρ to find an amenable representation $W_{\rho} \leq W$.

Bédos, Conti and Tuset ('03 and '05) extended Bekka's definition for LCQG representations. They asked:

Question

Is Bekka's theorem true for LCQGs?

They were able to give partial answers.

Theorem (Ng-V., '17)

The Bédos–Conti–Tuset question has an affirmative answer.

Proof of Main Theorem 1, implication $2 \Longrightarrow 3$

- Amenability of G is equivalent to that of W.
- Use ρ to find an amenable representation $W_{\rho} \leq W$.

- C.-K. Ng and A. Viselter, Amenability of locally compact quantum groups and their unitary co-representations, Bull. Lond. Math. Soc. 49 (2017), no. 3, 491–498.
- C.-K. Ng, Strictly amenable representations of reduced group C*-algebras Int. Math. Res. Not. IMRN (2015), no. 17, 7853–7860.
- E. Bédos, R. Conti and L. Tuset, *On amenability and co-amenability of algebraic quantum groups and their corepresentations*, Canad. J. Math. 57 (2005), 17–60.
- E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865–884.
- J. Kustermans and S. Vaes, *Locally compact quantum groups* Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837–934.
- M. E. B. Bekka, Amenable unitary representations of locally compact groups Invent. Math. 100 (1990), no. 2, 383–401.
 - C. Lance, On nuclear C*-algebras
 J. Funct. Anal. 12 (1973), 157–176.

Thank you for your attention!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))