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Amenability of groups

G – a locally compact group.

Definition
A mean on G is a state m ∈ L∞(G)∗

(that is: m(x) ≥ 0 when x ≥ 0 and m(1) = 1).
A mean m is left invariant if m(Ltx) = m(x) for all x ∈ L∞(G) and t ∈ G.
G is amenable if it has a left invariant mean.

Examples (and non-examples)
1 Every compact group is amenable: use the Haar measure!
2 Every abelian (or even solvable) group is amenable

I Markov–Kakutani fixed point theorem

3 Every locally-finite group is amenable
4 Fn is not amenable for all n ≥ 2.
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Amenability of groups

Numerous equivalent characterizations:
G is amenable ⇐⇒ ...

topological amenability: there is a mean m ∈ L∞(G)∗ with

m(ω ∗ x) = ω(1)m(x) for all x ∈ L∞(G), ω ∈ L1(G)

Leptin’s theorem: VN(G)∗ has a left bounded approximate identity
I here VN(G) := 〈λg : g ∈ G〉 ⊆ B(L2(G)) and VN(G)∗ � A(G).

[But also: means on algebras other than L∞(G), Hulanicki’s theorem,
Folner’s condition, Reiter’s condition(s), Rickert’s theorem, etc...]
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Amenability of groups

Theorem (Lance, ’73)
1 G is amenable =⇒ C∗r (G) is nuclear
2 if G is discrete, the converse also holds

I (but not generally).

The reduced group C ∗-algebra C ∗r (G)

Recall: (λg)G is the left regular rep of G on L2(G).

C∗r (G) :=
{∫

G f(t)λt dt : f ∈ Cc(G)
}‖·‖
⊆ 〈λg : g ∈ G〉 =: VN(G).
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Nuclearity

Definition
A C∗-algebra A is nuclear if

“the identity map A→ A approximately factors through fin-dim algebras
via CP contractions”,

that is: there are nets (nα) inN and (Sα) , (Tα) of completely positive
contractions

A

Sα ##

A

Mnα(C)

Tα

;;

and (Tα ◦ Sα)(x) −→
α

x for every x ∈ A.

Ami Viselter (University of Haifa) Amenability of LCQGs Positivity IX, U of A 5 / 18



Nuclearity

Definition
A C∗-algebra A is nuclear if

“the identity map A→ A approximately factors through fin-dim algebras
via CP contractions”,

that is: there are nets (nα) inN and (Sα) , (Tα) of completely positive
contractions

A

Sα ##

A

Mnα(C)

Tα

;;

and (Tα ◦ Sα)(x) −→
α

x for every x ∈ A.

Ami Viselter (University of Haifa) Amenability of LCQGs Positivity IX, U of A 5 / 18



Nuclearity

Remark
A is nuclear ⇐⇒ A∗∗ is injective ⇐⇒ every representation of A
generates an injective vN alg.

Recall: by Lance, G is amenable =⇒ C∗r (G) is nuclear, but the
converse does not always hold.

Question
Find a characterization of amenability involving nuclearity that always
works.

Several similar characterizations involving injectivity were found
recently (Soltan–V, Crann–Neufang, Crann).

Theorem (C.-K. Ng, ’15)
G – locally compact group.
G is amenable ⇐⇒ C∗r (G) is nuclear and has a tracial state.
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A group as a quantum group

G – a locally compact group.
1 The von Neumann algebra L∞(G).
2 Co-multiplication: the ∗-homomorphism

∆ : L∞(G)→ L∞(G) ⊗ L∞(G) � L∞(G ×G)

defined by
(∆(f))(t , s) := f(ts) (f ∈ L∞(G)).

By associativity, we have (∆ ⊗ id)∆ = (id ⊗∆)∆.

3 Left and right Haar measures. View them as n.s.f. weights
ϕ,ψ : L∞(G)+ → [0,∞] by ϕ(f) :=

∫
G f(t) dt`, ψ(f) :=

∫
G f(t) dtr .

Motivation for quantum groups
Lack of Pontryagin duality for non-Abelian l.c. groups.
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Locally compact quantum groups

Definition (Kustermans–Vaes, ’00)
A locally compact quantum group is a pair G = (M,∆) such that:

1 M is a von Neumann algebra
2 ∆ : M → M ⊗M is a co-multiplication: a normal, faithful, unital
∗-homomorphism which is co-associative, i.e.,

(∆ ⊗ id)∆ = (id ⊗∆)∆

3 There are two n.s.f. weights ϕ,ψ on M (the Haar weights) with:
I ϕ((ω ⊗ id)∆(x)) = ω(1)ϕ(x) when ω ∈ M+

∗ , x ∈ M+ and ϕ(x) < ∞
I ψ((id ⊗ ω)∆(x)) = ω(1)ψ(x) when ω ∈ M+

∗ , x ∈ M+ and ψ(x) < ∞.

Denote L∞(G) := M.
L∞(G)∗ becomes a Banach algebra by ω ∗ ρ := (ω ⊗ ρ) ◦∆.
C0(G) ⊆ L∞(G): canonical weakly dense C∗-algebra.
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Locally compact quantum groups

Rich structure theory, including an unbounded antipode and duality
G 7→ Ĝ within the category satisfying ˆ̂

G = G.

Example (commutative LCQGs: G = G)
L∞(G) = L∞(G)
C0(G) = C0(G)

Example (co-commutative LCQGs: G = Ĝ)

The dual Ĝ of G (as a LCQG) has

L∞(G) = VN(G)
C0(G) = C∗r (G)

∆ : VN(G)→ VN(G) ⊗ VN(G) given by ∆(λg) := λg ⊗ λg

ϕ = ψ = the Plancherel weight on VN(G).

If G is Abelian, Ĝ is its Pontryagin dual (up to unitary equivalence).
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Amenability of LCQGs

Recall: a group G is amenable ⇐⇒ there is a mean m ∈ L∞(G)∗ with
m(ω ∗ x) = ω(1)m(x) for all x ∈ L∞(G) and ω ∈ L1(G) � L∞(G)∗.

Definition
A LCQG G is amenable if there is a state m ∈ L∞(G)∗ such that

m
(
(id ⊗ ω)(∆(x))︸             ︷︷             ︸

ω∗x

)
= ω(1)m(x) (∀x ∈ L∞(G), ω ∈ L∞(G)∗).

Recall Leptin’s theorem: a group G is amenable ⇐⇒ VN(G)∗ has a
left bounded approximate identity.

Definition
A LCQG G is strongly amenable if L∞(Ĝ)∗ has a left bounded
approximate identity.
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Amenability of LCQGs

At least one side of Leptin’s theorem is true:

Theorem (Bédos–Tuset, ’03)
If G is strongly amenable, then it is amenable.

The converse is open even for Kac algebras.
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The left regular representation

G – locally compact quantum group.
All information on G is encoded in a unitary W ∈ M(C0(G) ⊗min C0(Ĝ))
satisfying

∆(x) = W ∗(1 ⊗ x)W (∀x ∈ L∞(G)).

Example
If G = G, then W ∈ M(C0(G) ⊗min C∗r (G)) � Cb(G,M(C∗r (G))) given by

g 7→ λg (g ∈ G).
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Characterizing amenability in terms of nuclearity

Recall Ng’s Theorem:

Theorem
G – locally compact group.
G is amenable ⇐⇒ C∗r (G) is nuclear and has a tracial state.

Main Theorem 1 (Ng–V., ’17)
G – LCQG. Consider the following conditions:

1 G is strongly amenable;
2 C0(Ĝ) is nuclear, and there is a state ρ on C0(Ĝ) that is invariant

under the left action of G on C0(Ĝ):

(id ⊗ ρ) (W ∗(1 ⊗ x)W) = ρ(x)1 (∀x ∈ C0(Ĝ));

3 G is amenable.
Then 1 =⇒ 2 =⇒ 3.
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Invariance under the left action of G on C0(Ĝ)

Case G = G
W corresponds to the function g 7→ λg,
thus, for x ∈ C∗r (G),W ∗(1 ⊗ x)W corresponds to the func. g 7→ λ∗gxλg,
hence the condition

(id ⊗ ρ) (W ∗(1 ⊗ x)W) = ρ(x)1

means that ρ ∈ C∗r (G)∗ satisfies

ρ(λ∗gxλg) = ρ(x) (∀g ∈ G),

that is, ρ is tracial.

Case G is discrete
The Haar state of Ĝ satisfies the invariance condition ⇐⇒ G is Kac
(Izumi, ’02).
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Characterizing amenability in terms of nuclearity

Recall our result:

Main Theorem 1 (Ng–V.)
G – LCQG. Consider the following conditions:

1 G is strongly amenable;
2 C0(Ĝ) is nuclear, and there is a state ρ on C0(Ĝ) that is invariant

under the left action of G on C0(Ĝ);
3 G is amenable.

Then 1 =⇒ 2 =⇒ 3.

Main Theorem 2 (Crann, ’17, yet unpublished)
We have 1⇐⇒ 2.

We emphasize that his proof uses our implication 2 =⇒ 3 to deduce 1
from 2.
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Tools of proof of Main Theorem 1

Implication 1 =⇒ 2 is easy.
For 2 =⇒ 3, consider the following:

Definition and Theorem (Bekka, ’90, Inventiones)
G – locally compact group.

Def. A representation π of G on H is amenable if there exists a
G-invariant mean on B(H): a state m ∈ B(H)∗ such that
m

(
π∗gxπg

)
= m(x) for all x ∈ B(H), g ∈ G.

Thm. If π1 � π2 and π1 is amenable, so is π2.
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Tools of proof of Main Theorem 1

Bédos, Conti and Tuset (’03 and ’05) extended Bekka’s definition for
LCQG representations. They asked:

Question
Is Bekka’s theorem true for LCQGs?

They were able to give partial answers.

Theorem (Ng–V., ’17)
The Bédos–Conti–Tuset question has an affirmative answer.

Proof of Main Theorem 1, implication 2 =⇒ 3
Amenability of G is equivalent to that of W .
Use ρ to find an amenable representation Wρ �W .
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Thank you for your attention!
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