Positive linear maps on C*-algebras-Choi's conjecture-

Mitsuru Uchiyama Shimane Univ. , Ritsumeikan Univ.

7/21/2017, Edmonton

Let \mathcal{A}, \mathcal{B} be unital C^* -algebras. \mathcal{A}_s denotes the real subspace of all selfadjoint operators in \mathcal{A} .

Let \mathcal{A}, \mathcal{B} be unital C^* -algebras. \mathcal{A}_s denotes the real subspace of all selfadjoint operators in \mathcal{A} . **Definition**

- (i) A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ is said to be *selfadjoint* if $\Phi(X^*) = \Phi(X)^*$ for every $X \in \mathcal{A}$, *positive* if $\Phi(A) \ge 0$ for every $A \ge 0$, and *unital* if $\Phi(I) = I$.
- (ii) A linear map Φ is called a C^* -homomorphism if $\Phi(X^2) = (\Phi(X))^2$ for all $X \in \mathcal{A}$.

A continuous linear map Φ is C^* -homomorphism $\Leftrightarrow \Phi(A^2) = \Phi(A)^2$ for all $A \in \mathcal{A}_s$

A continuous linear map Φ is C^* -homomorphism $\Leftrightarrow \Phi(A^2) = \Phi(A)^2$ for all $A \in \mathcal{A}_s$ $\Leftrightarrow \Phi(AB + BA) = \Phi(A)\Phi(B) + \Phi(B)\Phi(A)$ for all $A, B \in \mathcal{A}_s$ (Jordan product) A continuous linear map Φ is C^* -homomorphism $\Leftrightarrow \Phi(A^2) = \Phi(A)^2$ for all $A \in \mathcal{A}_s$ $\Leftrightarrow \Phi(AB + BA) = \Phi(A)\Phi(B) + \Phi(B)\Phi(A)$ for all $A, B \in \mathcal{A}_s$ (Jordan product) $\Leftrightarrow \Phi(A^n) = (\Phi(A))^n$ for all $A \in \mathcal{A}_s$ and for all $n = 1, 2, 3, \cdots$. A continuous linear map Φ is C^* -homomorphism $\Leftrightarrow \Phi(A^2) = \Phi(A)^2$ for all $A \in \mathcal{A}_s$ $\Leftrightarrow \Phi(AB + BA) = \Phi(A)\Phi(B) + \Phi(B)\Phi(A)$ for all $A, B \in \mathcal{A}_s$ (Jordan product) $\Leftrightarrow \Phi(A^n) = (\Phi(A))^n$ for all $A \in \mathcal{A}_s$ and for all $n = 1, 2, 3, \cdots$.

 \Leftrightarrow for each real continuous function h(t) defined on an interval of the real axis,

$$\Phi(h(A)) = h(\Phi(A))$$
 for all $A \in \mathcal{A}_s$,

provided the both sides are well-defined.

A C^* -homomorphism Φ is not necessarily an algebraic homomorphism (for instance, transposed mapping), but Φ is positive and continuous, and $\Phi(I)$ is a projection. (see Størmer[1963] for its characterization)

Definition

A real continuous function f defined on an interval J is called an operator convex function if

$$f(sA + (1 - s)B) \le sf(A) + (1 - s)f(B)$$

for all $A, B \in \mathcal{A}_s$ with $\sigma(A), \ \sigma(B) \subset J$ and for all $s: 0 < s < 1$.

Definition

A real continuous function f defined on an interval J is called an operator convex function if

$$f(sA + (1-s)B) \leq sf(A) + (1-s)f(B)$$

for all $A, B \in A_s$ with $\sigma(A), \sigma(B) \subset J$ and for all s: 0 < s < 1.

(i)
$$t$$
 and t^2 are operator convex on $(-\infty, \infty)$.
(ii) $\frac{1}{t}$ is operator convex on $(0, \infty)$.
(iii) t^{λ} $(1 < \lambda < 2)$ is operator convex on $(0, \infty)$.
 $(\because) t^{1+a} = \frac{\sin a\pi}{\pi} \int_0^\infty (t - x + \frac{x^2}{x+t}) x^{a-1} dx \ (0 < a < 1)$
(iv) $t^{\lambda} (-1 < \lambda < 0)$ is operator convex on $(0, \infty)$.
 $(\because) t^{a-1} = \frac{\sin a\pi}{\pi} \int_0^\infty \frac{1}{x+t} x^{a-1} dx \ (0 < a < 1)$

(Kadison [1952]) If a linear map Φ is contractive and positive, then

$$(\Phi(A))^2 \leq \Phi(A^2)$$
 for all $A \in \mathcal{A}_s$

(3)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(Kadison [1952]) If a linear map Φ is contractive and positive, then

$$(\Phi(A))^2 \leq \Phi(A^2)$$
 for all $A \in \mathcal{A}_s$

(Davis [1952], Choi [1974]) If f is an operator convex function on (-a, a) and if a positive linear map Φ is unital, then

$$f(\Phi(A)) \leq \Phi(f(A))$$
for all $A \in \mathcal{A}_s$ s.t. $\sigma(A) \subset (-a,a).$

(Kadison [1952]) If a linear map Φ is unital and if $\Phi(|A|) = |\Phi(A)|$

for all $A \in \mathcal{A}_s$, then Φ is a C^* -homomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Choi [1974]) Let f be a non-affine operator convex function on (-a, a) and Φ a unital and positive linear map.

Then Φ is a C^* -homomorphism if

 $f(\Phi(A)) = \Phi(f(A))$

(1)

for all $A \in A_s$ s.t. $\sigma(A) \subset (-a, a)$.

(Choi [1974]) Let f be a non-affine operator convex function on (-a, a) and Φ a unital and positive linear map.

Then Φ is a C^* -homomorphism if

 $f(\Phi(A)) = \Phi(f(A)) \tag{1}$

for all $A \in A_s$ s.t. $\sigma(A) \subset (-a, a)$.

* He conjectured that this fact would hold for a non-affine continuous function *f*.

(Choi [1974]) Let f be a non-affine operator convex function on (-a, a) and Φ a unital and positive linear map.

Then Φ is a C^* -homomorphism if

 $f(\Phi(A)) = \Phi(f(A)) \tag{1}$

for all $A \in A_s$ s.t. $\sigma(A) \subset (-a, a)$.

* He conjectured that this fact would hold for a non-affine continuous function *f*.

* We shall prove his conjecture.

For $A \in \mathcal{A}_s$, $\mathcal{L}(A) := \{ rA + sI : r, s \in R \}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

For
$$A \in \mathcal{A}_s$$
, $\mathcal{L}(A) := \{ rA + sI : r, s \in R \}.$

Theorem 1

Let $\Phi \in B(\mathcal{A}, \mathcal{B})$ be a selfadjoint -not necessarily positiveand unital map and f a non-affine continuous function on an interval J. If for a given $A \in \mathcal{A}_s$

$$\Phi(f(X)) = f(\Phi(X)) \tag{2}$$

for all $X \in \mathcal{L}(A)$ s.t. $\sigma(X), \sigma(\Phi(X)) \subset J$, then $\Phi(A^2) = \Phi(A)^2$.

For
$$A \in \mathcal{A}_s$$
, $\mathcal{L}(A) := \{ rA + sI : r, s \in R \}.$

Theorem 1

Let $\Phi \in B(\mathcal{A}, \mathcal{B})$ be a selfadjoint -not necessarily positiveand unital map and f a non-affine continuous function on an interval J. If for a given $A \in \mathcal{A}_s$

$$\Phi(f(X)) = f(\Phi(X)) \tag{2}$$

for all
$$X \in \mathcal{L}(A)$$
 s.t. $\sigma(X), \sigma(\Phi(X)) \subset J$,
then $\Phi(A^2) = \Phi(A)^2$.

Remark. Suppose s is an interior point of J. Then for $A \in A_s$ the spectra of X = tA + sI and $\Phi(X) = t\Phi(A) + sI$ are both in J for sufficiently small t_{tox}

Corollary 2

Let Φ be a linear, positive and unital map, and let f a non-affine continuous function on J.

Corollary 2

Let Φ be a linear, positive and unital map, and let f a non-affine continuous function on J. (i) If for a given $A \in \mathcal{A}_s$ $\Phi(f(X)) = f(\Phi(X))$ for all $X \in \mathcal{L}(A)$ s.t. $\sigma(X) \subset J$, then $\Phi(A^n) = \Phi(A)^n$ for $n \in \mathbb{N}$.

Corollary 2

Let Φ be a linear, positive and unital map, and let f a non-affine continuous function on J.

(i) If for a given $A \in A_s$ $\Phi(f(X)) = f(\Phi(X))$ for all $X \in \mathcal{L}(A)$ s.t. $\sigma(X) \subset J$, then $\Phi(A^n) = \Phi(A)^n$ for $n \in N$.

(ii) If $\Phi(f(X)) = f(\Phi(X))$ for all $X \in \mathcal{A}_s$ s.t.

 $\sigma(X), \sigma(\Phi(X)) \subset J$, then Φ is a C^{*}-homomorphism on $\mathcal{A}.$ (Choi's conjecture)

Proof of (i) of Corollary 2. By Theorem, we get $\Phi(A^2) = \Phi(A)^2$. Suppose *B* commutes to *A*. From Kadison's inequality

$$\Phi\left((A+tB)^2\right) \ge (\Phi(A)+t\Phi(B))^2 \quad (\forall t \in \mathbb{R}).$$

This implies $\phi(A)\phi(B) + \phi(B)\phi(A) = 2\phi(AB)$ because of $\Phi(A^2) = \Phi(A)^2$. This gives $\phi(A^n) = \phi(A)^n$ for every n.

If f(t) is twice differentiable at an interior point $a \in J$ and $f''(a) \neq 0$, then Theorem 1 holds for f.

If f(t) is twice differentiable at an interior point $a \in J$ and $f''(a) \neq 0$, then Theorem 1 holds for f.

Proof of Lemma 1

From the formula

$$f''(a) = \lim_{t\to 0} \frac{f(a+t) + f(a-t) - 2f(a)}{t^2},$$

 $n^{2}\left(f(a+\frac{1}{n}t)+f(a-\frac{1}{n}t)-2f(a)\right) \Longrightarrow f''(a)t^{2}$ on every finite interval as $n \to \infty$.

Suppose $\Phi(f(X)) = f(\Phi(X))$ on $\mathcal{L}(A)$. Since $\sigma(al \pm \frac{1}{n}A), \sigma(al \pm \frac{1}{n}\Phi(A)) \subset J$ for sufficiently large n,

Mitsuru Uchiyama Shimane Univ. , Ritsumeil/Positive linear maps on C*-algebras-Choi's co 7/21/2017, Edmonton 13 / 24

Suppose $\Phi(f(X)) = f(\Phi(X))$ on $\mathcal{L}(A)$. Since $\sigma(al \pm \frac{1}{n}A), \sigma(al \pm \frac{1}{n}\Phi(A)) \subset J$ for sufficiently large n,

$$\Phi\left(n^{2}\left(f(aI+\frac{1}{n}A)+f(aI-\frac{1}{n}A)-2f(aI)\right)\right)$$
$$=n^{2}\left(f(aI+\frac{1}{n}\Phi(A))+f(aI-\frac{1}{n}\Phi(A))-2f(aI)\right).$$

Mitsuru Uchiyama Shimane Univ. , Ritsumeil/Positive linear maps on C*-algebras-Choi's co 7/21/2017, Edmonton 13 / 24

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ●のの⊙

Suppose
$$\Phi(f(X)) = f(\Phi(X))$$
 on $\mathcal{L}(A)$. Since $\sigma(al \pm \frac{1}{n}A), \sigma(al \pm \frac{1}{n}\Phi(A)) \subset J$ for sufficiently large n ,

$$\Phi\left(n^{2}\left(f(aI+\frac{1}{n}A)+f(aI-\frac{1}{n}A)-2f(aI)\right)\right)$$
$$=n^{2}\left(f(aI+\frac{1}{n}\Phi(A))+f(aI-\frac{1}{n}\Phi(A))-2f(aI)\right).$$

By letting $n \to \infty$, we derive $\Phi(f''(a)A^2) = f''(a)\Phi(A)^2$ and hence $\Phi(A^2) = \Phi(A)^2$. \Box

(i) If Theorem 1 holds for a restriction of f to a subinterval, then it does for f itself.

(i) If Theorem 1 holds for a restriction of f to a subinterval, then it does for f itself.
(ii) If f is non-affine on J, then for every δ > 0 there is a subinterval [a, b] of J such that b - a < δ and the restriction of f to [a, b] is non-affine.

(i) If Theorem 1 holds for a restriction of f to a subinterval, then it does for f itself.
(ii) If f is non-affine on J, then for every δ > 0 there is a subinterval [a, b] of J such that b - a < δ and the restriction of f to [a, b] is non-affine.

It is enough for us to prove that Theorem 1 holds for a non-affine continuous function f defined on a finite closed interval [a, b].

Let $\varphi(t)$ be a C^{∞} function on \mathbb{R} with the support in [-1,1] such that $\varphi(t) \geq 0$ and $\int_{-\infty}^{\infty} \varphi(t) dt = 1$.

Let $\varphi(t)$ be a C^{∞} function on \mathbb{R} with the support in [-1, 1] such that $\varphi(t) \geq 0$ and $\int_{-\infty}^{\infty} \varphi(t) dt = 1$. For a continuous function f(t) on [a, b] and $\lambda > 0$, $f_{\lambda}(t)$ on \mathbb{R} defined by

$$f_{\lambda}(t) = rac{1}{\lambda} \int_{a}^{b} arphi(rac{t-s}{\lambda}) f(s) ds$$

is a C^{∞} function and the support of f_{λ} is in $[a - \lambda, b + \lambda]$.

Since

$f_{\lambda}(t) = \int_{-1}^{1} \varphi(x) f(t - \lambda x) dx$ for $\mathbf{a} + \lambda \leq t \leq \mathbf{b} - \lambda$,

Since

$$f_{\lambda}(t) = \int_{-1}^{1} \varphi(x) f(t - \lambda x) dx \text{ for } \mathbf{a} + \lambda \leq t \leq \mathbf{b} - \lambda,$$

$$f_{\lambda}(x) \Longrightarrow f(x) \text{ on } [\mathbf{a} + \delta, \mathbf{b} - \delta] \text{ as } \lambda \to +0 \text{ for any}$$

$$\delta > 0,$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Since

$$f_{\lambda}(t) = \int_{-1}^{1} \varphi(x) f(t - \lambda x) dx \text{ for } \mathbf{a} + \lambda \leq t \leq b - \lambda,$$

$$f_{\lambda}(x) \Longrightarrow f(x) \text{ on } [\mathbf{a} + \delta, \mathbf{b} - \delta] \text{ as } \lambda \to +0 \text{ for any}$$

$$\delta > 0,$$

and

$$f_{\lambda}(X) = \int_{-1}^{1} \varphi(x) f(X - \lambda x I) dx \qquad (3)$$

イロト 不得 トイヨト イヨト 二日

for $X \in \mathcal{A}_s$ with $\sigma(X) \subset (a + \lambda, b - \lambda)$, where the integral converges in the operator norm.

Let f(t) be a function on [a, b], and define $f_{\lambda}(t)$ as above for $0 < \lambda < (b - a)/2$. If there is a λ such that Theorem 1 holds for $f_{\lambda}|_{[a+\lambda,b-\lambda]}$, then it does for f(t) itself.

Let f(t) be a function on [a, b], and define $f_{\lambda}(t)$ as above for $0 < \lambda < (b - a)/2$. If there is a λ such that Theorem 1 holds for $f_{\lambda}|_{[a+\lambda,b-\lambda]}$, then it does for f(t) itself.

Proof Fix λ so that Theorem 1 holds for $f_{\lambda}|_{[a+\lambda,b-\lambda]}$. Let Φ be a linear, continuous, selfadjoint and unital map, and $A \in \mathcal{A}_s$. Assume

$$\Phi(f(X)) = f(\Phi(X)) \tag{4}$$

for all $X \in \mathcal{L}(A)$: $\sigma(X), \sigma(\Phi(X)) \subseteq [a, b]$. We have to show that $\Phi(A^2) = \Phi(A)^2$. Take $\forall Y \in \mathcal{L}(A)$ with $\sigma(Y)$, $\sigma(\Phi(Y)) \subseteq [a + \lambda, b - \lambda]$. Then by (3),

$$egin{aligned} &f_\lambda(Y)=\int_{-1}^1 arphi(x)f(Y-\lambda xl)dx,\ &f_\lambda(\Phi(Y))=\int_{-1}^1 arphi(x)f(\Phi(Y)-\lambda xl)dx. \end{aligned}$$

Take $\forall Y \in \mathcal{L}(A)$ with $\sigma(Y)$, $\sigma(\Phi(Y)) \subseteq [a + \lambda, b - \lambda]$. Then by (3),

$$egin{aligned} &f_\lambda(Y)=\int_{-1}^1 arphi(x)f(Y-\lambda xl)dx,\ &f_\lambda(\Phi(Y))=\int_{-1}^1 arphi(x)f(\Phi(Y)-\lambda xl)dx. \end{aligned}$$

Since, for
$$-1 \le x \le 1$$
, $Y - \lambda x I \in \mathcal{L}(A)$ and
 $\sigma(Y - \lambda x I)$, $\sigma(\Phi(Y - \lambda x I)) \subseteq [a, b]$,
in view of (4),
 $\Phi(f(Y - \lambda x I)) = f(\Phi(Y - \lambda x I)) = f(\Phi(Y) - \lambda x I)$.

Mitsuru Uchiyama Shimane Univ., RitsumeikPositive linear maps on C*-algebras-Choi's co 7/21/2017, Edmonton 18 / 24

This yields

$$\Phi(f_{\lambda}(Y)) = \int_{-1}^{1} \varphi(x) \Phi(f(Y - \lambda xI)) dx$$
$$= \int_{-1}^{1} \varphi(x) f(\Phi(Y) - \lambda xI) dx = f_{\lambda}(\Phi(Y)).$$

This yields

$$\Phi(f_{\lambda}(Y)) = \int_{-1}^{1} \varphi(x) \Phi(f(Y - \lambda xI)) dx$$

= $\int_{-1}^{1} \varphi(x) f(\Phi(Y) - \lambda xI) dx = f_{\lambda}(\Phi(Y)).$

We have therefore shown that

$$\Phi(f_{\lambda}(Y)) = f_{\lambda}(\Phi(Y))$$

for all $Y \in \mathcal{L}(A)$ with $\sigma(Y)$, $\sigma(\Phi(Y)) \subseteq [a + \lambda, b - \lambda]$. By the assumption about $f_{\lambda}|_{[a+\lambda, b-\lambda]}$ we have $\Phi(A^2) = \Phi(A)^2$.

Let f(t) be a non-affine continuous function defined on [a, b]. Then there is a function $g \in C_0^{\infty}(a, b)$ such that $\int_a^b g''(t)f(t)dt \neq 0$.

Let f(t) be a non-affine continuous function defined on [a, b]. Then there is a function $g \in C_0^{\infty}(a, b)$ such that $\int_a^b g''(t)f(t)dt \neq 0$.

Proof Assume that $\int_a^b g''(t)f(t)dt = 0$ for every $g \in C_0^{\infty}(a, b)$. By considering f as a distribution on (a, b) we get

$$\int_a^b g(t)f''(t)dt = \int_a^b g''(t)f(t)dt = 0,$$

which means f'' = 0. Hence, $f(t) = c_1 t + c_2$ as distribution (L. Schwartz).

This implies

$$\int_a^b (f(t)-c_1t-c_2)h(t)dt=0 \quad \text{for all } h\in C_0^\infty(a,b).$$

Since f(t) is continuous, $f(t) - c_1 t - c_2 = 0$ on (a, b)and hence on [a, b]; f(t) is therefore affine; contradiction. Take a g given in Lemma 6 and suppose its support is contained in $(a + \delta, b - \delta)$ for $\delta > 0$. Then for f_{λ}

$$\int_{a+\delta}^{b-\delta} g(t) f_\lambda''(t) dt = \int_{a+\delta}^{b-\delta} g''(t) f_\lambda(t) dt \ arrow \int_{a+\delta}^{\lambda\downarrow 0} \int_{a+\delta}^{b-\delta} g''(t) f(t) dt = \int_a^b g''(t) f(t) dt
eq 0.$$

Hence, for sufficiently small $\lambda > 0$, $f_{\lambda}''(t) \not\equiv 0$ on $[a + \delta, b - \delta]$. Thus for sufficiently small λ less than δ , we have $f_{\lambda}''(t) \not\equiv 0$ on $[a + \lambda, b - \lambda]$. By Lemma 3, Theorem 1 holds for $f_{\lambda}|_{[a+\lambda,b-\lambda]}$; hence by Lemma 5 it does for f too. This concludes the proof of Theorem 1.

Thank you !

A B > A
 A
 B > A
 A

医下 不良下

- M. D. Choi, A Schwarz inequality for positive linear maps on C -algebras. Illinois J. Math. 18(1974)565–574
- C. Davis, A Schwarz inequality for convex operator functions. Proc. Amer. Math. Soc. 8 (1957) 42–44
- R. V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. of Math. (2) 56 (1952) 494–503
- L. Schwartz, Theorie des distributions, Hermann & Cie, 1966.
- E. Størmer, Positive linear maps on operator algebras, Acta Math. 110 (1963) 233–278.
- M. Uchiyama, Positive linear maps on C*-algebras and rigid functions, JMAA. (2017) 1472–1478.

イロト 不得下 イヨト イヨト