The almost-invariant subspace problem for Banach spaces

Adi Tcaciuc

MacEwan University, Edmonton, Canada

Positivity IX, University of Alberta, July 19, 2017

1/23

Invariant subspace problem

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

• Aronszajn and Smith - for compact operators

Invariant subspace problem

- Aronszajn and Smith for compact operators
- Lomonosov for operators commuting with a compact operator

Invariant subspace problem

- Aronszajn and Smith for compact operators
- Lomonosov for operators commuting with a compact operator
- Enflo first example of a bounded operator without invariant subspaces

Invariant subspace problem

- Aronszajn and Smith for compact operators
- Lomonosov for operators commuting with a compact operator
- Enflo first example of a bounded operator without invariant subspaces
- Read bounded operator on ℓ_1 without invariant subspaces

Invariant subspace problem

- Aronszajn and Smith for compact operators
- Lomonosov for operators commuting with a compact operator
- Enflo first example of a bounded operator without invariant subspaces
- \bullet Read bounded operator on ℓ_1 without invariant subspaces
- Argyros and Haydon example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity

Invariant subspace problem

- Aronszajn and Smith for compact operators
- Lomonosov for operators commuting with a compact operator
- Enflo first example of a bounded operator without invariant subspaces
- $\bullet\,$ Read bounded operator on ℓ_1 without invariant subspaces
- Argyros and Haydon example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity
- question still open for l₂, reflexive Banach spaces, dual operators, positive operators, etc...

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that T + F has an invariant subspace of infinite dimension and codimension in X?

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that T + F has an invariant subspace of infinite dimension and codimension in X?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that (I - P)TP is finite rank (P is the orthogonal projection onto Y)?

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that T + F has an invariant subspace of infinite dimension and codimension in X?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that (I - P)TP is finite rank (P is the orthogonal projection onto Y)?

Equivalently, does there exist Y infinite dimensional and with infinite dimensional orthogonal complement Y^{\perp} such that for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$ we have $T = \begin{bmatrix} * & * \\ F & * \end{bmatrix}$ with F finite rank?

Related results

Theorem (Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

Related results

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

In particular, for any $T \in \mathcal{B}(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under T - F, where F := (I - P)TP is compact.

Related results

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

In particular, for any $T \in \mathcal{B}(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under T - F, where F := (I - P)TP is compact.

Theorem(Voiculescu, 1976)

Under the same hypotheses, T has the form $T = \begin{vmatrix} * & F_2 \\ F_1 & * \end{vmatrix}$

where F_1 and F_2 are compact with norms at most ε .

・ロト・(部・・モト・モ・・モ

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or T-**almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$.

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or T-**almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$.

A subspace Y of a Banach space X is called a **half-space** if it is of both infinite dimension and infinite codimension in X.

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or T-**almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$.

A subspace Y of a Banach space X is called a **half-space** if it is of both infinite dimension and infinite codimension in X.

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have almost invariant half-spaces?

Proposition(APTT, 2009)

Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under T + F for some finite rank operator F.

Proposition(APTT, 2009)

Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under T + F for some finite rank operator F.

Proposition(APTT, 2009)

Let T be an operator on a Banach space X. If T has an almost invariant half-space then so does its adjoint T^* .

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

① T has no eigenvalues.

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- **①** T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.
- O There is a vector whose orbit is a minimal sequence.

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- **1** T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.
- O There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- **1** T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.
- O There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on I_p .

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.
- O There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l_p . Marcoux, Popov and Radjavi (2012) remarked that the fist hypotheses condition is not needed.

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

- 1 T has no eigenvalues.
- The unbounded component of the resolvent contains {0 < |z| < ε} for some ε > 0.
- O There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l_p . Marcoux, Popov and Radjavi (2012) remarked that the fist hypotheses condition is not needed.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space.In particular, all known counterexamples to the invariant subspace problem (e.g. the operators constructed by Enflo or Read) are not counterexamples to the almost-invariant half-space problem.

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$: previous theorem

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$: previous theorem When $\partial \sigma(T) \setminus \sigma_p(T) = \emptyset$ and $\partial \sigma(T^*) \setminus \sigma_p(T^*) = \emptyset$: an important ingredient is the main theorem from APTT(2009). For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that (I - P)TP has rank at most one, where P is the orthogonal projection onto Y.

For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that (I - P)TP has rank at most one, where P is the orthogonal projection onto Y. Equivalently, relative to the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$, T has the form $T = \begin{bmatrix} * & * \\ F & * \end{bmatrix}$ where F has rank one.

Theorem (PT, 2013)

Let $T \in \mathcal{B}(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, T has an almost invariant half-space Y_{ε} such that $(T - \lambda I)_{|Y_{\varepsilon}|}$ is compact and $\|(T - \lambda I)_{|Y_{\varepsilon}}\| < \varepsilon$

Theorem (PT, 2013)

Let $T \in \mathcal{B}(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, T has an almost invariant half-space Y_{ε} such that $(T - \lambda I)_{|Y_{\varepsilon}|}$ is compact and $\|(T - \lambda I)_{|Y_{\varepsilon}}\| < \varepsilon$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, there exists a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K is compact, F has rank one, and both have norms at most ε .

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, there exists a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K is compact, F has rank one, and both have norms at most ε .

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $||F|| < \varepsilon$, and such that T + F admits an IHS.

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $||F|| < \varepsilon$, and such that T + F admits an IHS.

if ∂σ(T) \ σ_p(T) ≠ Ø we can take d = 1 (no reflexivity needed)

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $||F|| < \varepsilon$, and such that T + F admits an IHS.

if ∂σ(T) \ σ_p(T) ≠ Ø we can take d = 1 (no reflexivity needed)

• Popov, T. (2013): for dual operators

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators

15/23

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a *compact* perturbation that admits an invariant half-space

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a *compact* perturbation that admits an invariant half-space

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T,preprint, 2017)

If X is a Banach space, any $T \in \mathcal{B}(X)$ admits an almost-invariant half-space with error at most one.

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T,preprint, 2017)

If X is a Banach space, any $T \in \mathcal{B}(X)$ admits an almost-invariant half-space with error at most one.

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then for any $\varepsilon > 0$ there exists a rank one operator F with $||F|| < \varepsilon$ such that T + F has an invariant half-space.

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then for any $\varepsilon > 0$ there exists a rank one operator F with $||F|| < \varepsilon$ such that T + F has an invariant half-space.

Theorem (T, preprint, 2017)

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator. Then for any $\varepsilon > 0$ there exists a finite rank operator F with $||F|| < \varepsilon$ such that T + F has an invariant half-space. Moreover, if $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$, F can be taken to be rank one.

Theorem(Voiculescu, 1976)

 $T \in B(H)$ has the form $T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix}$ where F_1 and F_2 are compact with norms at most ε .

Theorem(Voiculescu, 1976)

 $T \in B(H)$ has the form $T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix}$ where F_1 and F_2 are compact with norms at most ε .

In other words, there exist K compact such that T - K has a reducing half-space.

Theorem(Voiculescu, 1976)

 $T \in B(H)$ has the form $T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix}$ where F_1 and F_2 are compact with norms at most ε .

In other words, there exist K compact such that T - K has a reducing half-space.

Question: Can we take K finite rank?

Theorem (Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

Theorem(Popov, T, 2013)

If $\lambda \in \partial \sigma(T) \setminus \sigma_p(T)$, then for any $\varepsilon > 0$, T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K is compact, F has rank one, and both have norms at most ε .

Theorem (Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε .

Theorem(Popov, T, 2013)

If $\lambda \in \partial \sigma(T) \setminus \sigma_p(T)$, then for any $\varepsilon > 0$, T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K is compact, F has rank one, and both have norms at most ε .

Question: Can we also get F rank one when $\partial \sigma(T) \setminus \sigma_p(T) = \emptyset$?

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \setminus \sigma(T)$ define a vector h_{λ} in X by

$$h_{\lambda} := (\lambda I - T)^{-1}(e).$$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \setminus \sigma(T)$ define a vector h_{λ} in X by

$$h_{\lambda} := (\lambda I - T)^{-1}(e).$$

Observe that $(\lambda I - T)h_{\lambda} = e$, hence

 $Th_{\lambda} = \lambda h_{\lambda} - e$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \setminus \sigma(T)$ define a vector h_{λ} in X by

$$h_{\lambda} := (\lambda I - T)^{-1}(e).$$

Observe that $(\lambda I - T)h_{\lambda} = e$, hence

$$Th_{\lambda} = \lambda h_{\lambda} - e$$

Hence, for a subset $A \subset \mathbb{C} \setminus \sigma(T)$, the closed subspace Y of X defined by

$$Y = \overline{\mathsf{span}} \big\{ h_{\lambda} \colon \lambda \in A \big\}$$

is a *T*-almost invariant subspace (which is not not necessarily a half-space).

If $(x_n)_n$ is a *basic sequence* then $\overline{\text{span}}\{x_{2n}\}_n$ is a half subspace of $\overline{\text{span}}\{x_n\}_n$.

Theorem(Kadets, Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that $0 \notin \overline{S}^{||\cdot||}$. Then the following are equivalent:

Theorem(Kadets,Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that $0 \notin \overline{S}^{||\cdot||}$. Then the following are equivalent:

1 S fails to contain a basic sequence.

Theorem(Kadets,Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that $0 \notin \overline{S}^{||\cdot||}$. Then the following are equivalent:

- S fails to contain a basic sequence.
- **2** \overline{S}^{weak} is weakly compact and $0 \notin \overline{S}^{weak}$.

For the non-reflexive case an important ingredient is the following theorem.

Theorem (Johnson, Rosenthal, 1972)

If (x_n^*) is a semi-normalized, w^* -null, sequence in a dual Banach space X^* , then there exists a a basic subsequence (y_n^*) of (x_n^*) , and a bounded sequence (y_n) in X such that $y_i^*(y_j) = \delta_{ij}$ for all $1 \le i, j < \infty$.

Thank you!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

23/23