The almost-invariant subspace problem for Banach

 spacesAdi Tcaciuc
MacEwan University, Edmonton, Canada
Positivity IX, University of Alberta, July 19, 2017

Motivation

Invariant subspace problem
Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_{1} without invariant subspaces

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_{1} without invariant subspaces
- Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity

Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_{1} without invariant subspaces
- Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity
- question still open for I_{2}, reflexive Banach spaces, dual operators, positive operators, etc...

A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T+F$ has an invariant subspace of infinite dimension and codimension in X ?

A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T+F$ has an invariant subspace of infinite dimension and codimension in X ?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that $(I-P) T P$ is finite rank (P is the orthogonal projection onto Y)?

A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T+F$ has an invariant subspace of infinite dimension and codimension in X ?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that $(I-P) T P$ is finite rank (P is the orthogonal projection onto Y)?
Equivalently, does there exist Y infinite dimensional and with infinite dimensional orthogonal complement Y^{\perp} such that for the decomposition $\mathcal{H}=Y \oplus Y^{\perp}$ we have $T=\left[\begin{array}{ll}* & * \\ F & *\end{array}\right]$ with F finite rank?

Related results

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

Related results

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

In particular, for any $T \in \mathcal{B}(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under $T-F$, where $F:=(I-P) T P$ is compact.

Related results

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

In particular, for any $T \in \mathcal{B}(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under $T-F$, where $F:=(I-P) T P$ is compact.

Theorem(Voiculescu, 1976)

Under the same hypotheses, T has the form $T=\left[\begin{array}{cc}* & F_{2} \\ F_{1} & *\end{array}\right]$ where F_{1} and F_{2} are compact with norms at most ε.

An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called almost invariant for T, or T-almost invariant if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y+M$.

An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called almost invariant for T, or T-almost invariant if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y+M$.

A subspace Y of a Banach space X is called a half-space if it is of both infinite dimension and infinite codimension in X.

An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called almost invariant for T, or T-almost invariant if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y+M$.

A subspace Y of a Banach space X is called a half-space if it is of both infinite dimension and infinite codimension in X.

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have almost invariant half-spaces?

Almost invariant half-space problem

Proposition(APTT, 2009)

Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under $T+F$ for some finite rank operator F.

Almost invariant half-space problem

Proposition(APTT, 2009)

Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under $T+F$ for some finite rank operator F.

Proposition(APTT, 2009)

Let T be an operator on a Banach space X. If T has an almost invariant half-space then so does its adjoint T^{*}.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

Results

Theorem (APTT, 2009)
Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.
(3) There is a vector whose orbit is a minimal sequence.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on I_{p}.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on I_{p}.
Marcoux, Popov and Radjavi (2012) remarked that the fist hypotheses condition is not needed.

Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of the resolvent contains $\{0<|z|<\varepsilon\}$ for some $\varepsilon>0$.
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on I_{p}.
Marcoux, Popov and Radjavi (2012) remarked that the fist hypotheses condition is not needed.

Results

Theorem (Popov, T., 2013)
Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Results

Theorem (Popov, T., 2013)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^{*} has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Results

Theorem (Popov, T., 2013)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^{*} has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues.

Results

Theorem (Popov, T., 2013)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^{*} has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space.

Results

Theorem (Popov, T., 2013)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^{*} has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space.In particular, all known counterexamples to the invariant subspace problem (e.g. the operators constructed by Enflo or Read) are not counterexamples to the almost-invariant half-space problem.

Results

> Theorem (PT, 2013)
> Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

Results

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$ or $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$: previous theorem

Results

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$ or $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$: previous theorem
When $\partial \sigma(T) \backslash \sigma_{p}(T)=\emptyset$ and $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right)=\emptyset:$ an important ingredient is the main theorem from APTT(2009).

Results

For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that $(I-P) T P$ has rank at most one, where P is the orthogonal projection onto Y.

Results

For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that $(I-P) T P$ has rank at most one, where P is the orthogonal projection onto Y.
Equivalently, relative to the decomposition $\mathcal{H}=Y \oplus Y^{\perp}, T$ has the form $T=\left[\begin{array}{cc}* & * \\ F & *\end{array}\right]$ where F has rank one.

Results: Perturbations of small norm

Theorem (PT, 2013)

Let $T \in \mathcal{B}(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon>0, T$ has an almost invariant half-space Y_{ε} such that $(T-\lambda I)_{\mid Y_{\varepsilon}}$ is compact and $\left\|(T-\lambda I)_{\mid Y_{\varepsilon}}\right\|<\varepsilon$

Results: Perturbations of small norm

Theorem (PT, 2013)

Let $T \in \mathcal{B}(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon>0, T$ has an almost invariant half-space Y_{ε} such that $(T-\lambda I)_{\mid Y_{\varepsilon}}$ is compact and

$$
\left\|(T-\lambda I)_{\mid Y \varepsilon}\right\|<\varepsilon
$$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon>0$, there exists a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K is compact, F has rank one, and both have norms at most ε.

Results: Perturbations of small norm

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon>0$, there exists a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form
$T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K is compact, F has rank one, and
both have norms at most ε.

Results: Perturbations of small norm

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon>0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\|<\varepsilon$, and such that $T+F$ admits an IHS.

Results: Perturbations of small norm

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon>0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\|<\varepsilon$, and such that $T+F$ admits an IHS.

- if $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$ we can take $d=1$ (no reflexivity needed)

Results: Perturbations of small norm

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon>0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\|<\varepsilon$, and such that $T+F$ admits an IHS.

- if $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$ we can take $d=1$ (no reflexivity needed)

The non-reflexive case

For general Banach spaces:

The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators

The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators

The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators

The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a compact perturbation that admits an invariant half-space

The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a compact perturbation that admits an invariant half-space

The non-reflexive case

Theorem(T, preprint, 2017)
Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$.

The non-reflexive case

Theorem(T, preprint, 2017)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

The non-reflexive case

Theorem(T, preprint, 2017)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T,preprint, 2017)

If X is a Banach space, any $T \in \mathcal{B}(X)$ admits an almost-invariant half-space with error at most one.

The non-reflexive case

Theorem(T, preprint, 2017)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T,preprint, 2017)

If X is a Banach space, any $T \in \mathcal{B}(X)$ admits an almost-invariant half-space with error at most one.

The non-reflexive case

Theorem (T,preprint, 2017)
Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$. Then for any $\varepsilon>0$ there exists a rank one operator F with $\|F\|<\varepsilon$ such that $T+F$ has an invariant half-space.

The non-reflexive case

Theorem (T,preprint, 2017)

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator such that $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset$. Then for any $\varepsilon>0$ there exists a rank one operator F with $\|F\|<\varepsilon$ such that $T+F$ has an invariant half-space.

Theorem (T,preprint, 2017)

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator. Then for any $\varepsilon>0$ there exists a finite rank operator F with $\|F\|<\varepsilon$ such that $T+F$ has an invariant half-space. Moreover, if $\partial \sigma(T) \backslash \sigma_{p}(T) \neq \emptyset$ or $\partial \sigma\left(T^{*}\right) \backslash \sigma_{p}\left(T^{*}\right) \neq \emptyset, F$ can be taken to be rank one.

Some open problems

Theorem(Voiculescu, 1976)

$T \in B(H)$ has the form $T=\left[\begin{array}{cc}* & F_{2} \\ F_{1} & *\end{array}\right]$ where F_{1} and F_{2} are compact with norms at most ε.

Some open problems

Theorem(Voiculescu, 1976)

$T \in B(H)$ has the form $T=\left[\begin{array}{cc}* & F_{2} \\ F_{1} & *\end{array}\right]$ where F_{1} and F_{2} are compact with norms at most ε.

In other words, there exist K compact such that $T-K$ has a reducing half-space.

Some open problems

Theorem(Voiculescu, 1976)

$T \in B(H)$ has the form $T=\left[\begin{array}{cc}* & F_{2} \\ F_{1} & *\end{array}\right]$ where F_{1} and F_{2} are compact with norms at most ε.

In other words, there exist K compact such that $T-K$ has a reducing half-space.
Question: Can we take K finite rank?

Some open problems

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

Theorem(Popov, T, 2013)

If $\lambda \in \partial \sigma(T) \backslash \sigma_{p}(T)$, then for any $\varepsilon>0, T$ has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K is compact, F has rank one, and both have norms at most ε.

Some open problems

Theorem(Brown, Pearcy, 1971)

Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there exists a scalar λ and a decomposition of $\mathcal{H}=Y \oplus Y^{\perp}$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K and F are compact and have norms at most ε.

Theorem(Popov, T, 2013)

If $\lambda \in \partial \sigma(T) \backslash \sigma_{p}(T)$, then for any $\varepsilon>0, T$ has the form $T=\left[\begin{array}{cc}\lambda I+K & * \\ F & *\end{array}\right]$ where K is compact, F has rank one, and both have norms at most ε.

Question: Can we also get F rank one when $\partial \sigma(T) \backslash \sigma_{p}(T)=\emptyset$?

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \backslash \sigma(T)$ define a vector h_{λ} in X by

$$
h_{\lambda}:=(\lambda I-T)^{-1}(e)
$$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \backslash \sigma(T)$ define a vector h_{λ} in X by

$$
h_{\lambda}:=(\lambda I-T)^{-1}(e)
$$

Observe that $(\lambda I-T) h_{\lambda}=e$, hence

$$
T h_{\lambda}=\lambda h_{\lambda}-e
$$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \backslash \sigma(T)$ define a vector h_{λ} in X by

$$
h_{\lambda}:=(\lambda I-T)^{-1}(e) .
$$

Observe that $(\lambda I-T) h_{\lambda}=e$, hence

$$
T h_{\lambda}=\lambda h_{\lambda}-e
$$

Hence, for a subset $A \subset \mathbb{C} \backslash \sigma(T)$, the closed subspace Y of X defined by

$$
Y=\overline{\operatorname{span}}\left\{h_{\lambda}: \lambda \in A\right\}
$$

is a T-almost invariant subspace (which is not not necessarily a half-space).

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.
We try to find $e \in X$ and a sequence $\left(\lambda_{n}\right)_{n}$ in the resolvent such that $\left(h_{\lambda_{n}}\right)_{n}$ is basic sequence.

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.
We try to find $e \in X$ and a sequence $\left(\lambda_{n}\right)_{n}$ in the resolvent such that $\left(h_{\lambda_{n}}\right)_{n}$ is basic sequence.
Old criterion for extracting basic sequences:

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.
We try to find $e \in X$ and a sequence $\left(\lambda_{n}\right)_{n}$ in the resolvent such that $\left(h_{\lambda_{n}}\right)_{n}$ is basic sequence.
Old criterion for extracting basic sequences:

Theorem(Kadets,Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that $0 \notin \bar{S}^{\|\cdot\|}$. Then the following are equivalent:

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.
We try to find $e \in X$ and a sequence $\left(\lambda_{n}\right)_{n}$ in the resolvent such that $\left(h_{\lambda_{n}}\right)_{n}$ is basic sequence.
Old criterion for extracting basic sequences:

Theorem(Kadets,Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that $0 \notin \bar{S}^{\|\cdot\|}$. Then the following are equivalent:
(1) S fails to contain a basic sequence.

The Method (sketch)

If $\left(x_{n}\right)_{n}$ is a basic sequence then $\overline{\operatorname{span}}\left\{x_{2 n}\right\}_{n}$ is a half subspace of $\overline{\operatorname{span}}\left\{x_{n}\right\}_{n}$.
We try to find $e \in X$ and a sequence $\left(\lambda_{n}\right)_{n}$ in the resolvent such that $\left(h_{\lambda_{n}}\right)_{n}$ is basic sequence.
Old criterion for extracting basic sequences:

Theorem(Kadets,Pełczyński, 1965)

Let S be a bounded subset of a Banach space X such that
$0 \notin \bar{S}^{\|\cdot\|}$. Then the following are equivalent:
(1) S fails to contain a basic sequence.
(2) $\bar{S}^{\text {weak }}$ is weakly compact and $0 \notin \bar{S}^{\text {weak }}$.

The Method (sketch)

For the non-reflexive case an important ingredient is the following theorem.

Theorem (Johnson, Rosenthal, 1972)

If $\left(x_{n}^{*}\right)$ is a semi-normalized, w^{*}-null, sequence in a dual Banach space X^{*}, then there exists a a basic subsequence $\left(y_{n}^{*}\right)$ of $\left(x_{n}^{*}\right)$, and a bounded sequence $\left(y_{n}\right)$ in X such that $y_{i}^{*}\left(y_{j}\right)=\delta_{i j}$ for all $1 \leq i, j<\infty$.

Thank you!

