Unbounded topologies and uo-convergence

Mitchell Taylor

July 20, 2017

Mitchell Taylor Unbounded topologies and uo-convergence

• Basic definition of $u\tau$ -convergence

- Basic definition of $u\tau$ -convergence
- What properties of *un*-convergence hold for general τ ?

- Basic definition of $u\tau$ -convergence
- What properties of *un*-convergence hold for general τ ?
- Applications of $u\tau$ -convergence and new perspectives on *un*-convergence

- Basic definition of $u\tau$ -convergence
- What properties of *un*-convergence hold for general τ ?
- Applications of *u* τ -convergence and new perspectives on *un*-convergence
- Connections with minimal topologies and uo-convergence

- Basic definition of $u\tau$ -convergence
- What properties of *un*-convergence hold for general τ ?
- Applications of *u* τ -convergence and new perspectives on *un*-convergence
- Connections with minimal topologies and uo-convergence

Basic construction

Mitchell Taylor Unbounded topologies and uo-convergence

э

Let X be a vector lattice and τ a locally solid topology on X, i.e., a linear topology that has a base at zero consisting of solid sets.

Let X be a vector lattice and τ a locally solid topology on X, i.e., a linear topology that has a base at zero consisting of solid sets.

For each solid set $V \subseteq X$ and each $u \in X_+$ define $V_u := \{x \in X : |x| \land u \in V\}$. It is easy to see that V_u is also solid and $V \subseteq V_u$. Let X be a vector lattice and τ a locally solid topology on X, i.e., a linear topology that has a base at zero consisting of solid sets.

For each solid set $V \subseteq X$ and each $u \in X_+$ define $V_u := \{x \in X : |x| \land u \in V\}$. It is easy to see that V_u is also solid and $V \subseteq V_u$.

If τ is a locally solid topology, it has a base, $\{V_i\}$, at zero consisting of solid sets. The collection $\{(V_i)_u\}$ where $u \in X_+$ defines a locally solid topology, $u\tau$, on X.

• τ is Hausdorff iff $u\tau$ is Hausdorff

• τ is Hausdorff iff $u\tau$ is Hausdorff

•
$$x_{\alpha} \xrightarrow{\tau} 0 \Rightarrow x_{\alpha} \xrightarrow{u\tau} 0$$

• τ is Hausdorff iff $u\tau$ is Hausdorff

•
$$x_{\alpha} \xrightarrow{\tau} 0 \Rightarrow x_{\alpha} \xrightarrow{u\tau} 0$$

•
$$x_{\alpha} \xrightarrow{u\tau} 0$$
 iff $|x_{\alpha}| \wedge u \xrightarrow{\tau} 0$ for all $u \in X_+$

• τ is Hausdorff iff $u\tau$ is Hausdorff

•
$$x_{\alpha} \xrightarrow{\tau} 0 \Rightarrow x_{\alpha} \xrightarrow{u\tau} 0$$

- $x_{\alpha} \xrightarrow{u\tau} 0$ iff $|x_{\alpha}| \wedge u \xrightarrow{\tau} 0$ for all $u \in X_+$
- The map τ → uτ from the set of locally solid topologies on X to itself is idempotent

Definition

A locally solid topology is **unbounded** if $\tau = u\tau$ or, equivalently, if $\tau = u\sigma$ for some locally solid topology σ . Going from τ to $u\tau$ changes the topology dramatically but, qualitatively, going from $u\tau$ to $u\sigma$ does not.

Going from τ to $u\tau$ changes the topology dramatically but, qualitatively, going from $u\tau$ to $u\sigma$ does not.

Lemma

Let X be a vector lattice, $u \in X_+$ and V a solid subset of X. Then V_u is either contained in [-u, u] or contains a non-trivial ideal. If V is, further, absorbing, and V_u is contained in [-u, u], then u is a strong unit.

Theorem (Kandic, Marabeh, Troitsky)

Let X be an order continuous Banach lattice. The un-topology is locally convex iff X is atomic. In general, if $0 \neq \varphi \in (X, un)^*$ then φ is a linear combination of the coordinate functionals of finitely many atoms.

Theorem (Kandic, Marabeh, Troitsky)

Let X be an order continuous Banach lattice. The un-topology is locally convex iff X is atomic. In general, if $0 \neq \varphi \in (X, un)^*$ then φ is a linear combination of the coordinate functionals of finitely many atoms.

Theorem

Let (X, τ) be an order continuous locally solid vector lattice. The $u\tau$ -topology is locally convex iff X is atomic. In general, if $0 \neq \varphi \in (X, u\tau)^*$ then φ is a linear combination of the coordinate functionals of finitely many atoms. Notice, no metrizability, local convexity, or completeness of the topology τ is needed in the previous theorem. This is a general phenomenon.

Notice, no metrizability, local convexity, or completeness of the topology τ is needed in the previous theorem. This is a general phenomenon.

Many results of the *un*-papers carry over to the locally solid setting by simply replacing "Banach lattice" by "(Hausdorff) locally solid topology".

Notice, no metrizability, local convexity, or completeness of the topology τ is needed in the previous theorem. This is a general phenomenon.

Many results of the *un*-papers carry over to the locally solid setting by simply replacing "Banach lattice" by "(Hausdorff) locally solid topology".

A partial reason for this is that associated to an unbounded topology, σ , are many topologies τ satisfying $u\tau = \sigma$ - not all of these topologies are as "nice" as that of a complete lattice norm.

An application of unbounded topologies

Recall,

Theorem (Amemiya-Mori)

All Hausdorff order continuous topologies on a vector lattice X induce the same topology on the order bounded subsets of X.

Lemma (Gao, Troitsky, Xanthos)

Let X be a vector lattice, and Y a sublattice of X. Then Y is uo-closed in X if and only if it is o-closed in X.

Lemma (Gao, Troitsky, Xanthos)

Let X be a vector lattice, and Y a sublattice of X. Then Y is uo-closed in X if and only if it is o-closed in X.

Lemma

Let X be a vector lattice, τ a Hausdorff order continuous topology on X, and Y a sublattice of X. Y is $u\tau$ -closed in X if and only if it is τ -closed in X.

Lemma

Let X be a vector lattice, τ a Hausdorff order continuous topology on X, and Y a sublattice of X. Y is $u\tau$ -closed in X if and only if it is τ -closed in X.

Theorem

Let X be a vector lattice, τ and σ Hausdorff order continuous topologies on X, and Y a sublattice of X. Y is τ -closed in X if and only if it is σ -closed in X.

Lemma

Let X be a vector lattice, τ a Hausdorff order continuous topology on X, and Y a sublattice of X. Y is $u\tau$ -closed in X if and only if it is τ -closed in X.

Theorem

Let X be a vector lattice, τ and σ Hausdorff order continuous topologies on X, and Y a sublattice of X. Y is τ -closed in X if and only if it is σ -closed in X.

Proof.

Suppose Y is τ -closed; then Y is $u\tau$ -closed. Suppose $(y_{\alpha}) \subseteq Y$ and $y_{\alpha} \xrightarrow{u\sigma} x$. This means that $|y_{\alpha} - x| \land u \xrightarrow{\sigma} 0$ for all $u \in X_+$. Since $(|y_{\alpha} - x| \land u)$ is order bounded, this is equivalent to $|y_{\alpha} - x| \land u \xrightarrow{\tau} 0$ for all $u \in X_+$, which means $y_{\alpha} \xrightarrow{u\tau} x$. Therefore, $x \in Y$ and Y is $u\sigma$ -closed. This implies Y is σ -closed. It was proved in [KMT] that if X is an order continuous Banach lattice then the *un*-topology is complete iff X is finite-dimensional. Can we explain why this is true? It was proved in [KMT] that if X is an order continuous Banach lattice then the *un*-topology is complete iff X is finite-dimensional. Can we explain why this is true?

Yes!

It was proved in [KMT] that if X is an order continuous Banach lattice then the *un*-topology is complete iff X is finite-dimensional. Can we explain why this is true?

Yes!

Corollary

Let τ be a Hausdorff order continuous topology on a vector lattice X. τ is complete iff X is universally complete.

Liftings to the universal completion

Theorem

For a Hausdorff order continuous topology τ on X, TFAE:

- τ extends to a Hausdorff order continuous topology on X^u ;
- 2 τ extends to a locally solid topology on X^u ;
- Solution The topological completion \widehat{X} of (X, τ) is lattice isomorphic to X^u , that is, \widehat{X} is the universal completion of X;

Liftings to the universal completion

Theorem

For a Hausdorff order continuous topology τ on X, TFAE:

- τ extends to a Hausdorff order continuous topology on X^u ;
- 2 τ extends to a locally solid topology on X^u ;
- Solution The topological completion \widehat{X} of (X, τ) is lattice isomorphic to X^u , that is, \widehat{X} is the universal completion of X;
- τ is unbounded.

Minimal topologies

Definition

A Hausdorff locally solid topology on X is **minimal** if there is no coarser Hausdorff locally solid topology on X. It is **least** if it is coarser than every locally solid topology on X.

Theorem (Labuda, Conradie)

Minimal topologies are order continuous and unique.

Minimal topologies

Definition

A Hausdorff locally solid topology on X is **minimal** if there is no coarser Hausdorff locally solid topology on X. It is **least** if it is coarser than every locally solid topology on X.

Theorem (Labuda, Conradie)

Minimal topologies are order continuous and unique.

Theorem (Aliprantis and Burkinshaw)

If (X, Σ, μ) is a σ -finite measure space, then for each $0 \leq p < \infty$ the topology of (local) convergence in measure on $L_p(\mu)$ is the least topology. L_∞ does not admit a least topology; convergence in measure is the minimal topology on L_∞ .

Theorem

Let τ be a Hausdorff locally solid topology on X. TFAE:

- uo-null nets are τ -null
- 2) au is order continuous and unbounded
- $\bigcirc au$ is minimal

The equivalence of (i) and (iii) generalizes a classical relation between convergence a.e. and convergence in measure to vector lattices!