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Basic construction

Let X be a vector lattice and 7 a locally solid topology on X,
i.e., a linear topology that has a base at zero consisting of
solid sets.

For each solid set V C X and each u € X, define
V,:={xeX:|x| ANue V}. Itis easy to see that V, is also
solid and V C V,,.

If 7 is a locally solid topology, it has a base, {V;}, at zero
consisting of solid sets. The collection {(V;),} where u € X,
defines a locally solid topology, ur, on X.
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Basic properties

@ 7 is Hausdorff iff ur is Hausdorff
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Basic properties

o 7 is Hausdorff iff ur is Hausdorff
o x, >0=x, 50
0 x, — 0 iff [x,| Au =0 forall u€ X,

@ The map 7 +— ut from the set of locally solid topologies
on X to itself is idempotent

Definition

A locally solid topology is unbounded if 7 = u7 or,
equivalently, if 7 = uo for some locally solid topology o.
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What is more important u or 77

Going from 7 to ut changes the topology dramatically but,
qualitatively, going from u7 to uo does not.
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What is more important u or 77

Going from 7 to ut changes the topology dramatically but,
qualitatively, going from u7 to uo does not.

Let X be a vector lattice, u € X, and V' a solid subset of X.
Then V, is either contained in [—u, u] or contains a non-trivial
ideal. If V is, further, absorbing, and V, is contained in

[—u, u], then u is a strong unit.
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un to urt

Theorem (Kandic, Marabeh, Troitsky)

Let X be an order continuous Banach lattice. The
un-topology is locally convex iff X is atomic. In general, if
0 # ¢ € (X, un)* then ¢ is a linear combination of the
coordinate functionals of finitely many atoms.
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un to urt

Theorem (Kandic, Marabeh, Troitsky)

Let X be an order continuous Banach lattice. The
un-topology is locally convex iff X is atomic. In general, if
0 # ¢ € (X, un)* then ¢ is a linear combination of the
coordinate functionals of finitely many atoms.

Let (X, T) be an order continuous locally solid vector lattice.
The ut-topology is locally convex iff X is atomic. In general,
if 0 # ¢ € (X, ur)* then ¢ is a linear combination of the
coordinate functionals of finitely many atoms.
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Notice, no metrizability, local convexity, or completeness of the
topology 7 is needed in the previous theorem. This is a general
phenomenon.
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Many results of the un-papers carry over to the locally solid
setting by simply replacing “Banach lattice” by “(Hausdorff)
locally solid topology”.
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Notice, no metrizability, local convexity, or completeness of the
topology 7 is needed in the previous theorem. This is a general
phenomenon.

Many results of the un-papers carry over to the locally solid
setting by simply replacing “Banach lattice” by “(Hausdorff)
locally solid topology”.

A partial reason for this is that associated to an unbounded
topology, o, are many topologies 7 satisfying ur = o - not all
of these topologies are as “nice” as that of a complete lattice
norm.
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An application of unbounded topologies

Recall,

Theorem (Amemiya-Mori)

All Hausdorff order continuous topologies on a vector lattice X
induce the same topology on the order bounded subsets of X.
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A use for unbounded topologies

Lemma (Gao, Troitsky, Xanthos)

Let X be a vector lattice, and Y a sublattice of X. Then Y is
uo-closed in X if and only if it is o-closed in X.
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A use for unbounded topologies

Lemma (Gao, Troitsky, Xanthos)

Let X be a vector lattice, and Y a sublattice of X. Then Y is
uo-closed in X if and only if it is o-closed in X.

Lemma

Let X be a vector lattice, T a Hausdorff order continuous
topology on X, and Y a sublattice of X. Y is ur-closed in X
if and only if it is T-closed in X.
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Lemma

Let X be a vector lattice, T a Hausdorff order continuous
topology on X, and Y a sublattice of X. Y is ur-closed in X
if and only if it is T-closed in X.

Theorem

| A

Let X be a vector lattice, T and o Hausdorff order continuous
topologies on X, and Y a sublattice of X. Y is 7-closed in X
if and only if it is o-closed in X.

A
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Let X be a vector lattice, T a Hausdorff order continuous
topology on X, and Y a sublattice of X. Y is ur-closed in X
if and only if it is T-closed in X.

Let X be a vector lattice, T and o Hausdorff order continuous
topologies on X, and Y a sublattice of X. Y is 7-closed in X
if and only if it is o-closed in X.

Suppose Y is 7-closed; then Y is ur-closed. Suppose

(Ya) C Y and y, % x. This means that |y, — x| A u 2 0 for
all v € X;. Since (|ya — x| A u) is order bounded, this is
equivalent to |y, — x| A u = 0 for all u € X,, which means
Yo 2Ty x. Therefore, x € Y and Y is uo-closed. This implies
Y is o-closed. O
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The picture is clearer with general topologies

It was proved in [KMT] that if X is an order continuous
Banach lattice then the un-topology is complete iff X is
finite-dimensional. Can we explain why this is true?
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The picture is clearer with general topologies

It was proved in [KMT] that if X is an order continuous
Banach lattice then the un-topology is complete iff X is
finite-dimensional. Can we explain why this is true?

Yes!

Let 7 be a HausdorfF order continuous topology on a vector
lattice X. 7 is complete iff X is universally complete.
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Liftings to the universal completion

For a Hausdorff order continuous topology ™ on X, TFAE:
© 7 extends to a Hausdorff order continuous topology on
XU,.
© T extends to a locally solid topology on X";
@ The topological completion X of (X, 7) is lattice
isomorphic to X", that is, X is the universal completion
of X;
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Liftings to the universal completion

For a Hausdorff order continuous topology ™ on X, TFAE:
© 7 extends to a Hausdorff order continuous topology on
XU'.
© T extends to a locally solid topology on X";
@ The topological comp/etionA)A( of (X, 1) is lattice

isomorphic to X", that is, X is the universal completion
of X;

© 7 is unbounded.
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Minimal topologies

Definition

A Hausdorff locally solid topology on X is minimal if there is
no coarser Hausdorff locally solid topology on X. It is least if
it is coarser than every locally solid topology on X.

Theorem (Labuda, Conradie)

Minimal topologies are order continuous and unique.
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Minimal topologies

Definition

A Hausdorff locally solid topology on X is minimal if there is
no coarser Hausdorff locally solid topology on X. It is least if
it is coarser than every locally solid topology on X.

Theorem (Labuda, Conradie)

Minimal topologies are order continuous and unique.

Theorem (Aliprantis and Burkinshaw)

If (X, %, n) is a o-finite measure space, then for each
0 < p < oo the topology of (local) convergence in measure on
L,(p) is the least topology. L., does not admit a least

topology; convergence in measure is the minimal topology on
Loo.
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Connection between wo, ut and minimal topologies

Let 7 be a Hausdorff locally solid topology on X. TFAE:
Q uo-null nets are T-null

@ 7 is order continuous and unbounded

© 7 is minimal

The equivalence of (i) and (iii) generalizes a classical relation
between convergence a.e. and convergence in measure to
vector lattices!
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