The Regular Algebra Numerical Range

James Sweeney
University of South Carolina

Positivity IX, July 2017

Table of Contents

(1) Classical Numerical Ranges

(2) Regular Algebra Numerical Range
(3) Positive Numerical Ranges

Table of Contents

(1) Classical Numerical Ranges

(2) Regular Algebra Numerical Range

(3) Positive Numerical Ranges

Hilbert Spaces

Definition

For a bounded linear operator T on a Hilbert space \mathcal{H}, the numerical range $W(T)$ is defined as

$$
W(T):=\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1\}
$$

Theorem (Toeplitz-Hausdorff)

The numerical range of every bounded linear operator T on a Hilbert space is convex.

Theorem

If T is a bounded linear operator on a Hilbert space \mathcal{H}, then the spectrum of T is contained in the closure of the numerical range of T.

Banach Spaces

Definition

For a linear operator $T \in \mathcal{L}(E)$ on a Banach space E, the algebraic numerical range of T is defined to be

$$
V(\mathcal{L}(E), T):=\left\{\Phi(T): \Phi \in \mathcal{L}(E)^{*}, \Phi(I)=1=\|\Phi\|\right\}
$$

Such Φ are called states.

Definition

For a linear operator $T \in \mathcal{L}(E)$ on a Banach space E, the spatial numerical range of T is defined to be

$$
V(T):=\left\{f(T x): x \in E, f \in E^{*},\|x\|=\|f\|=1=f(x)\right\}
$$

Basic Properties

- $V(T) \subseteq V(\mathcal{L}(E), T)$
- $\sup \{|\lambda|: \lambda \in V(T)\}=\sup \{|\lambda|: \lambda \in V(\mathcal{L}(E), T)\}$

This supremum is known as the numerical radius, often denoted $v(T)$. In a complex Banach space, the numerical radius is equivalent to the norm:

$$
\frac{1}{e}\|T\| \leq v(T) \leq\|T\|
$$

Theorem (Williams)

For $T \in \mathcal{L}(E)$ we have that

$$
\sigma(T) \subseteq \overline{V(T)}
$$

Basic Properties

- $V(\mathcal{L}(E), T)$ is closed and convex, but $V(T)$ need not be. In fact $\overline{c o} V(T)=V(\mathcal{L}(E), T)$

Examples

Let $T=\left[\begin{array}{cc}0 & \frac{1}{3} \\ \frac{1}{3} & 1\end{array}\right]$ and $\|(z, w)\|=\max \left\{\|(z, w)\|_{\infty}, \frac{3}{\sqrt{10}}\|(z, w)\|_{2}\right\}$
Then the following picture represents $V(T)$.

Table of Contents

(1) Classical Numerical Ranges

(2) Regular Algebra Numerical Range

3 Positive Numerical Ranges

Regular Algebra Numerical Range

Let E be a Dedekind complete Banach Lattice over \mathbb{C}. Also, let $\mathcal{L}_{r}(E)$ be the set of all regular operators on E, the operators that are the difference of two positive linear operators.

Definition

For a regular operator $T \in \mathcal{L}_{r}(E)$ on a Banach Lattice E, the regular algebra numerical range is defined to be

$$
V\left(\mathcal{L}_{r}(E), T\right):=\left\{\Phi(T): \Phi \in \mathcal{L}_{r}(E)^{*},\|\Phi\|=1=\Phi(I)\right\}
$$

Such Φ will be called regular states.

Relations to Classical Numerical Ranges

For $T \in \mathcal{L}_{r}(E)$ we have

$$
V(T) \subseteq V(\mathcal{L}(E), T) \subseteq V\left(\mathcal{L}_{r}(E), T\right)
$$

Proof.

Note that for $\Phi \in \mathcal{L}_{r}(E)^{*}$ we have that $\|\Phi\| \leq\|\Phi\|_{r}$. This implies the unit balls of each space look like:

T disjoint with the identity

Theorem

For $T \in \mathcal{L}_{r}(E)$ and $T \perp I$ we have that $V\left(\mathcal{L}_{r}(E), T\right)$ is a disk centered around $z=0$.

We will see an example of an operator that is not disjoint with the identity, but still has a disk centered around $z=0$ as its numerical range.

Property

Let \mathcal{H} be a Hilbert space such that $H=H_{1} \oplus_{2} H_{2}$. Then

$$
V\left(\mathcal{L}_{r}(\mathcal{H}), T_{1} \oplus T_{2}\right)=\operatorname{co}\left\{V\left(\mathcal{L}_{r}\left(H_{1}\right), T_{1}\right), V\left(\mathcal{L}_{r}\left(H_{2}\right), T_{2}\right)\right\}
$$

T disjoint with the identity

Theorem

For $T \in \mathcal{L}_{r}(E)$ and $T \perp I$ we have that $V\left(\mathcal{L}_{r}(E), T\right)$ is a disk centered around $z=0$.

Examples

Let $T=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \oplus[1]$ on $\ell_{2}(\mathbb{C})$.

$$
\begin{aligned}
V\left(\mathcal{L}_{r}(\mathcal{H}), T\right) & =\operatorname{co}\left\{V\left(\mathcal{L}_{r}\left(\mathcal{H}_{1}\right),\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right), V\left(\mathcal{L}_{r}\left(\mathcal{H}_{2}\right),[1]\right)\right\} \\
& =\operatorname{co}\{\text { unit disk, } 1\} \\
& =\text { unit disk }
\end{aligned}
$$

An example of $V(\mathcal{L}(E), T) \neq V\left(\mathcal{L}_{r}(E), T\right)$

Examples

Let $T=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ over $\ell_{2}(\mathbb{C})$. Since E is a Hilbert space we can use the fact that $V(T)=W(T)=\{\langle T x, x\rangle: x \in E,\|x\|=1\} \subseteq \mathbb{R}$. Furthermore, $V(\mathcal{L}(E), T)=\overline{c o} V(T) \subseteq \mathbb{R}$.
However, $T \perp I$, so $V\left(\mathcal{L}_{r}(E), T\right)$ must be a disk and thus not a subset of \mathbb{R}.

T in the center, $\mathcal{Z}(E)$

For the Dedekind complete Banach lattice, E, let $\mathcal{Z}(E)=\left\{T \in \mathcal{L}_{r}(E):|T| \leq \lambda /\right\}$ be the center of E.

Theorem

For $T \in \mathcal{Z}(E)$ we have that $V\left(\mathcal{L}_{r}(E), T\right)=V(\mathcal{Z}(E), T)=\operatorname{co}(\sigma(T))$.

Property

Let $\Phi \in \mathcal{L}_{r}(E)^{*}$ be a regular state. Then $\left.\Phi\right|_{\mathcal{Z}(E)} \geq 0$.

Theorem

For $T \in \mathcal{L}_{r}(E)$ we have that $V\left(\mathcal{L}_{r}(E), T\right) \subseteq \mathbb{R}^{+}$if and only if $T \geq 0$ and $T \in \mathcal{Z}(E)$.

T in the center, $\mathcal{Z}(E)$

Theorem

For $T \in \mathcal{L}_{r}(E)$ we have that $V\left(\mathcal{L}_{r}(E), T\right) \subseteq \mathbb{R}^{+}$if and only if $T \geq 0$ and $T \in \mathcal{Z}(E)$.

Proof.

Using the property from the previous page, one direction is obvious. Assume that $V\left(\mathcal{L}_{r}(E), T\right) \subseteq \mathbb{R}^{+}$. Since $T \in \mathcal{L}_{r}(E), T=\mathcal{P}(T)+T_{1}$ where $\mathcal{P}(T) \in \mathcal{Z}(E)$ and $T_{1} \perp I$. For any regular state, Φ, we have

$$
\Phi(T)=\Phi(\mathcal{P}(T))+\Phi\left(T_{1}\right) .
$$

Consider the regular states, Φ, such that $\Phi=0$ on I^{d}. Then $\Phi(\mathcal{P}(T)) \geq 0$ for all such states which implies that $\mathcal{P}(T) \geq 0$.
Since $\Phi(\mathcal{P}(T)) \in \mathbb{R}$ for all regular states, we must also have $\Phi\left(T_{1}\right) \in \mathbb{R}$ for all regular states. If $T_{1} \neq 0$ then there exists a regular state Φ such that $\Phi\left(T_{1}\right) \in \mathbb{C} \backslash \mathbb{R}$ which is a contradiction of $V\left(\mathcal{L}_{r}(E), T\right) \subseteq \mathbb{R}^{+}$. So $T_{1}=0$ and $T=\mathcal{P}(T)$.

Table of Contents

(1) Classical Numerical Ranges
(2) Regular Algebra Numerical Range

(3) Positive Numerical Ranges

Positive Numerical Ranges

Definition

For $T \in \mathcal{L}_{r}(E)$ on a Dedekind complete Banach Lattice E, the positive spatial numerical range is defined to be

$$
V_{+}(T)=\left\{f(T x): 0 \leq x \in E, 0 \leq f \in E^{*},\|x\|=\|f\|=1=f(x)\right\}
$$

Definition

For $T \in \mathcal{L}_{r}(E)$ on a Dedekind complete Banach Lattice E, the positive algebraic numerical range is defined to be

$$
V_{+}\left(\mathcal{L}_{r}(E), T\right)=\left\{\Phi(T): 0 \leq \Phi \in \mathcal{L}_{r}(E)^{*},\|\Phi\|=1=\Phi(I)\right\} .
$$

Properties

Proposition

For $T \in \mathcal{L}_{r}(E)$ with $T \geq 0$, then $V_{+}(T)$ and $V_{+}\left(\mathcal{L}_{r}(E), T\right)$ are intervals in $[0, \infty)$.

Proposition

For $T \in \mathcal{L}_{r}(E)$ with $T \geq 0$, then
$\sup \left\{\lambda: \lambda \in V_{+}(T)\right\}=\sup \{|\lambda|: \lambda \in V(T)\}=\sup \left\{\lambda: \lambda \in V_{+}\left(\mathcal{L}_{r}(E), T\right)\right\}$.

Theorem

For $T \in \mathcal{L}_{r}(E)$ with $T \geq 0$, then

$$
\inf \left\{\lambda: \lambda \in V_{+}(T)\right\}=\sup \{c: T \geq c l\}
$$

In particular, if $T \perp I$, then $0 \in \overline{V_{+}(T)}$.

Properties

Theorem

For $T \in \mathcal{L}_{r}(E)$ with $T \geq 0$ then

$$
\overline{V_{+}(T)}=V_{+}\left(\mathcal{L}_{r}(E), T\right)
$$

Proof.

From the previous slide we know that both sets are intervals in $[0, \infty)$ with the same supremum. We also have that $V_{+}(T) \subseteq V_{+}\left(\mathcal{L}_{r}(E), T\right)$, so consider a case where

$$
\inf \left\{\lambda: \lambda \in V_{+}\left(\mathcal{L}_{r}(E), T\right)\right\}<\inf \left\{\lambda: \lambda \in V_{+}(T)\right\}=\delta
$$

By the previous theorem we have that $T-\delta I \geq 0$. However

$$
V_{+}\left(\mathcal{L}_{r}(E), T-\delta I\right) \nsubseteq[0, \infty)
$$

This yields a contradiction

Duality

$$
\text { For } T \in \mathcal{L}(E), V(T) \subseteq V\left(T^{*}\right) \text { and } \overline{\operatorname{co}} V(T)=\overline{c o} V\left(T^{*}\right) \text {. }
$$

Theorem

Let E be a Dedekind complete Banach lattice over \mathbb{C} with an order continuous norm. Then

$$
V\left(\mathcal{L}_{r}(E), T\right)=V\left(\mathcal{L}_{r}\left(E^{*}\right), T^{*}\right)
$$

In general, for $T \in \mathcal{L}_{r}(E)$ we have that $V_{+}(T) \subseteq V_{+}\left(T^{*}\right)$.

Theorem

For $T \in \mathcal{L}_{r}(E)$ with $T \geq 0$, we have that

$$
\overline{V_{+}(T)}=\overline{V_{+}\left(T^{*}\right)}
$$

Thank You

