The Regular Algebra Numerical Range

James Sweeney

University of South Carolina

Positivity IX, July 2017

James Sweeney (USC)

The Regular Algebra Numerical Range

Positivity IX 1 / 21

Table of Contents

Classical Numerical Ranges

2 Regular Algebra Numerical Range

Ositive Numerical Ranges

James Sweeney (USC)

Table of Contents

Regular Algebra Numerical Range

James Sweeney (USC)

• • • • • • • • • • • •

Hilbert Spaces

Definition

For a bounded linear operator T on a Hilbert space \mathcal{H} , the numerical range W(T) is defined as

$$W(T) := \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}$$

Theorem (Toeplitz-Hausdorff)

The numerical range of every bounded linear operator T on a Hilbert space is convex.

Theorem

If T is a bounded linear operator on a Hilbert space \mathcal{H} , then the spectrum of T is contained in the closure of the numerical range of T.

・ロン ・四 ・ ・ ヨン ・ ヨン

Banach Spaces

Definition

For a linear operator $T \in \mathcal{L}(E)$ on a Banach space E, the algebraic numerical range of T is defined to be

$$V(\mathcal{L}(E), T) := \{\Phi(T) : \Phi \in \mathcal{L}(E)^*, \Phi(I) = 1 = \|\Phi\|\}$$

Such Φ are called states.

Definition

For a linear operator $T \in \mathcal{L}(E)$ on a Banach space E, the spatial numerical range of T is defined to be

$$V(T) := \{f(Tx) : x \in E, f \in E^*, ||x|| = ||f|| = 1 = f(x)\}$$

イロト 不得下 イヨト イヨト

Basic Properties

- $V(T) \subseteq V(\mathcal{L}(E), T)$
- $\sup\{|\lambda|:\lambda\in V(T)\}=\sup\{|\lambda|:\lambda\in V(\mathcal{L}(E),T)\}$

This supremum is known as the numerical radius, often denoted v(T). In a complex Banach space, the numerical radius is equivalent to the norm:

$$\frac{1}{e}\|T\| \le v(T) \le \|T\|$$

Theorem (Williams)

For $T \in \mathcal{L}(E)$ we have that

$$\sigma(T) \subseteq \overline{V(T)}$$

(日) (周) (三) (三)

Basic Properties

• $V(\mathcal{L}(E), T)$ is closed and convex, but V(T) need not be. In fact $\overline{co}V(T) = V(\mathcal{L}(E), T)$

Examples

Let
$$T = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & 1 \end{bmatrix}$$
 and $||(z, w)|| = \max\{||(z, w)||_{\infty}, \frac{3}{\sqrt{10}}||(z, w)||_2\}$
Then the following picture represents $V(T)$.

James Sweeney (USC)

The Regular Algebra Numerical Range

Table of Contents

2 Regular Algebra Numerical Range

Positive Numerical Ranges

James Sweeney (USC)

• • • • • • • • • • • •

Let *E* be a Dedekind complete Banach Lattice over \mathbb{C} . Also, let $\mathcal{L}_r(E)$ be the set of all regular operators on *E*, the operators that are the difference of two positive linear operators.

Definition

For a regular operator $T \in \mathcal{L}_r(E)$ on a Banach Lattice E, the regular algebra numerical range is defined to be

$$V(\mathcal{L}_r(E), T) := \{\Phi(T) : \Phi \in \mathcal{L}_r(E)^*, \|\Phi\| = 1 = \Phi(I)\}$$

Such Φ will be called regular states.

くほと くほと くほと

Relations to Classical Numerical Ranges

For $T \in \mathcal{L}_r(E)$ we have

$$V(T) \subseteq V(\mathcal{L}(E), T) \subseteq V(\mathcal{L}_r(E), T)$$

Proof.

Note that for $\Phi \in \mathcal{L}_r(E)^*$ we have that $\|\Phi\| \le \|\Phi\|_r$. This implies the unit balls of each space look like:

T disjoint with the identity

Theorem

For $T \in \mathcal{L}_r(E)$ and $T \perp I$ we have that $V(\mathcal{L}_r(E), T)$ is a disk centered around z = 0.

We will see an example of an operator that is not disjoint with the identity, but still has a disk centered around z = 0 as its numerical range.

Property

Let \mathcal{H} be a Hilbert space such that $H = H_1 \oplus_2 H_2$. Then

$$V(\mathcal{L}_r(\mathcal{H}), T_1 \oplus T_2) = co\{V(\mathcal{L}_r(\mathcal{H}_1), T_1), V(\mathcal{L}_r(\mathcal{H}_2), T_2)\}$$

A D A D A D A

${\mathcal T}$ disjoint with the identity

Theorem

For $T \in \mathcal{L}_r(E)$ and $T \perp I$ we have that $V(\mathcal{L}_r(E), T)$ is a disk centered around z = 0.

Examples

Let
$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \oplus [1] \text{ on } \ell_2(\mathbb{C}).$$

 $V(\mathcal{L}_r(\mathcal{H}), T) = co\left\{V\left(\mathcal{L}_r(\mathcal{H}_1), \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right), V(\mathcal{L}_r(\mathcal{H}_2), [1])\right\}$
 $= co\{\text{unit disk}, 1\}$
 $= \text{unit disk}$

A (1) > A (2) > A

An example of $V(\mathcal{L}(E), T) \neq V(\mathcal{L}_r(E), T)$

Examples

Let $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ over $\ell_2(\mathbb{C})$. Since E is a Hilbert space we can use the fact that $V(T) = W(T) = \{\langle Tx, x \rangle : x \in E, ||x|| = 1\} \subseteq \mathbb{R}$. Furthermore, $V(\mathcal{L}(E), T) = \overline{co}V(T) \subseteq \mathbb{R}$. However, $T \perp I$, so $V(\mathcal{L}_r(E), T)$ must be a disk and thus not a subset of \mathbb{R} .

James Sweeney (USC)

T in the center, $\mathcal{Z}(E)$

For the Dedekind complete Banach lattice, E, let $\mathcal{Z}(E) = \{T \in \mathcal{L}_r(E) : |T| \le \lambda I\}$ be the center of E.

Theorem

For $T \in \mathcal{Z}(E)$ we have that $V(\mathcal{L}_r(E), T) = V(\mathcal{Z}(E), T) = co(\sigma(T))$.

Property

Let $\Phi \in \mathcal{L}_r(E)^*$ be a regular state. Then $\Phi \mid_{\mathcal{Z}(E)} \ge 0$.

Theorem

James Sweeney (USC)

For $T \in \mathcal{L}_r(E)$ we have that $V(\mathcal{L}_r(E), T) \subseteq \mathbb{R}^+$ if and only if $T \ge 0$ and $T \in \mathcal{Z}(E)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

T in the center, $\mathcal{Z}(E)$

Theorem

For $T \in \mathcal{L}_r(E)$ we have that $V(\mathcal{L}_r(E), T) \subseteq \mathbb{R}^+$ if and only if $T \ge 0$ and $T \in \mathcal{Z}(E)$.

Proof.

Using the property from the previous page, one direction is obvious. Assume that $V(\mathcal{L}_r(E), T) \subseteq \mathbb{R}^+$. Since $T \in \mathcal{L}_r(E)$, $T = \mathcal{P}(T) + T_1$ where $\mathcal{P}(T) \in \mathcal{Z}(E)$ and $T_1 \perp I$. For any regular state, Φ , we have

$$\Phi(T) = \Phi(\mathcal{P}(T)) + \Phi(T_1).$$

Consider the regular states, Φ , such that $\Phi = 0$ on I^d . Then $\Phi(\mathcal{P}(T)) \ge 0$ for all such states which implies that $\mathcal{P}(T) \ge 0$.

Since $\Phi(\mathcal{P}(T)) \in \mathbb{R}$ for all regular states, we must also have $\Phi(T_1) \in \mathbb{R}$ for all regular states. If $T_1 \neq 0$ then there exists a regular state Φ such that $\Phi(T_1) \in \mathbb{C} \setminus \mathbb{R}$ which is a contradiction of $V(\mathcal{L}_r(E), T) \subseteq \mathbb{R}^+$. So $T_1 = 0$ and $T = \mathcal{P}(T)$.

Table of Contents

Regular Algebra Numerical Range

-

Image: A match a ma

Definition

For $T \in \mathcal{L}_r(E)$ on a Dedekind complete Banach Lattice E, the positive spatial numerical range is defined to be

 $V_{+}(T) = \{f(Tx) : 0 \le x \in E, 0 \le f \in E^*, ||x|| = ||f|| = 1 = f(x)\}$

Definition

For $T \in \mathcal{L}_r(E)$ on a Dedekind complete Banach Lattice E, the positive algebraic numerical range is defined to be

$$W_+(\mathcal{L}_r(E), T) = \{\Phi(T) : 0 \leq \Phi \in \mathcal{L}_r(E)^*, \|\Phi\| = 1 = \Phi(I)\}.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Properties

Proposition

For $T \in \mathcal{L}_r(E)$ with $T \ge 0$, then $V_+(T)$ and $V_+(\mathcal{L}_r(E), T)$ are intervals in $[0, \infty)$.

Proposition

For $T \in \mathcal{L}_r(E)$ with $T \ge 0$, then

 $\sup\{\lambda:\lambda\in V_+(\mathcal{T})\}=\sup\{|\lambda|:\lambda\in V(\mathcal{T})\}=\sup\{\lambda:\lambda\in V_+(\mathcal{L}_r(E),\mathcal{T})\}.$

Theorem

For $T \in \mathcal{L}_r(E)$ with $T \ge 0$, then

$$\inf\{\lambda:\lambda\in V_+(T)\}=\sup\{c:T\geq cI\}.$$

In particular, if $T \perp I$, then $0 \in \overline{V_+(T)}$.

James Sweeney (USC)

Positivity IX 18 / 21

Properties

Theorem

For $T \in \mathcal{L}_r(E)$ with $T \ge 0$ then

$$\overline{V_+(T)} = V_+(\mathcal{L}_r(E), T)$$

Proof.

From the previous slide we know that both sets are intervals in $[0, \infty)$ with the same supremum. We also have that $V_+(T) \subseteq V_+(\mathcal{L}_r(E), T)$, so consider a case where

$$\inf\{\lambda:\lambda\in V_+(\mathcal{L}_r(E),T)\}<\inf\{\lambda:\lambda\in V_+(T)\}=\delta.$$

By the previous theorem we have that $T - \delta I \ge 0$. However

$$V_+(\mathcal{L}_r(E), T-\delta I) \not\subseteq [0,\infty).$$

This yields a contradiction

Duality

For
$$T \in \mathcal{L}(E)$$
, $V(T) \subseteq V(T^*)$ and $\overline{co}V(T) = \overline{co}V(T^*)$.

Theorem

Let E be a Dedekind complete Banach lattice over $\mathbb C$ with an order continuous norm. Then

$$V(\mathcal{L}_r(E), T) = V(\mathcal{L}_r(E^*), T^*)$$

In general, for $T \in \mathcal{L}_r(E)$ we have that $V_+(T) \subseteq V_+(T^*)$.

Theorem

For $T \in \mathcal{L}_r(E)$ with $T \ge 0$, we have that

$$\overline{V_+(T)} = \overline{V_+(T^*)}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Thank You

・ロト ・聞ト ・ヨト ・ヨト