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Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see
a new direction on ordered and preordered vector spaces emerge
which involves vector spaces equipped with an arbitrary set of
wedges.

Definition

For a vector space E , we call a nonempty subset W of E a wedge
if W + W ⊆W and λW ⊆W for all 0 ≤ λ ∈ R. In this case,
(E ,W ) is called a preordered vector space. A cone K is a wedge
that satisfies K ∩ (−K ) = {0}. In this case (E ,K ) is called an
ordered vector space.
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Multi-wedged spaces

Definition

We call a pair (E ,W) a multi-wedged space if E is a vector space
and W is a nonempty set of wedges in E .

The idea in the aforementioned work of Marcel de Jeu and Miek
Messerschmidt was to extend some classical results for ordered
vector spaces to results that hold for special types of multi-wedged
spaces.
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Andô’s theorem

Theorem (Andô’s theorem)

Let E be a real Banach space ordered by a closed cone K for
which E = K − K .

Then there exists a constant C > 0 such that
for every x ∈ E there exist y ∈ K and z ∈ −K for which x = y + z
and ||y ||+ ||z || ≤ C ||x ||.
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Andô’s theorem extended

Theorem (de Jeu, Messerschmidt)

Let (E ,W) be a multi-wedged space, where E is a Banach space,
and let {Wi}i∈I be a collection of closed wedges in W for which
every x ∈ E can be written as an absolutely convergent series
x =

∑
i∈I wi , with wi ∈Wi .

Then there exist continuous positively homogeneous maps
γi : E →Wi such that

(1.) x =
∑

i∈I γi (x) for all x ∈ E ,

(2.)
∑

i∈I ||γi (x)|| ≤ C ||x || for all x ∈ E .
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Multi-wedged vector lattices?

A curious mind who is interested in vector lattices and
multi-wedged spaces could very well ask if results from vector
lattice theory can likewise be extended to certain multi-wedged
spaces.
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The Riesz-Kantorovich formulas

In this talk, we’ll focus on extending the Riesz-Kantorovich
formulas to the multi-wedged setting.
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The Riesz-Kantorovich formulas

Theorem (Riesz-Kantorovich formulas)

Suppose (E ,W ) is a preordered vector space with the Riesz
decomposition property, and assume E = W −W .

Let (F ,F+) be
a Dedekind complete vector lattice. Then

(
Lb(E ,F ),L+

b (E ,F )
)

is
a Dedekind complete vector lattice. For T1,T2 ∈ Lb(E ,F ) and
x ∈W ,(
T1 ∨ T2

)
(x) = sup {T1(y1) + T2(y2) : y1, y2 ∈W , y1 + y2 = x} .

Note the importance of the RDP.
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Our first step

Our first step in obtaining multi-wedged Riesz-Kantorovich
formulas is to generalize the concept of suprema in ordered vector
spaces to the multi-wedged setting.
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A geometrical interpretation of suprema

Remark

For an ordered vector space (E ,K ) and a collection (xi )i∈I in E ,

it
is true that z = sup

i∈I
{xi} if and only if

⋂
i∈I (xi + K ) = z + K .
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Generalized suprema

Remark

If (E ,W) is a multi-wedged space and (xi ,Wi )i∈I is a collection in
E ×W

then any z ∈ E that satisfies⋂
i∈I

(xi + Wi ) = z +
⋂
i∈I

Wi

can be viewed as a generalized supremum of (xi ,Wi )i∈I .
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Multi-suprema

Definition

We refer to a generalized suprema of (xi ,Wi )i∈I as a
multi-suprema of (xi ,Wi )i∈I .

The set of all multi-suprema of
(xi ,Wi )i∈I is denoted msup

i∈I
(xi ,Wi ).

Remark

In order for such a set of multi-suprema to be nonempty, (xi ,Wi )i∈I
must be multi-bounded above, meaning that

⋂
i∈I (xi + Wi ) 6= ∅.
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Generalized vector lattices

Definition

Multi-wedged spaces in which msup
i∈I

(xi ,Wi ) 6= ∅ for all

multi-bounded above collections (xi ,Wi )i∈I with |I | ≤ κ are called
κ-multi-lattices.

Definition

Dedekind complete multi-lattices are multi-wedged spaces that are
κ-multi-lattices for any cardinal number κ.
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Example 1

Example

Consider the vector space E = R[0,2].

Define

W[0,1] = {f ∈ E : f (x) ≥ 0 for all x ∈ [0, 1]}, and

W(1,2] = {f ∈ E : f (x) ≥ 0 for all x ∈ (1, 2]}.
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Example 1 continued
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Example 1 continued
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Example 1 continued

Remark

We can infer from this example that (R[0,2], {W[0,1],W(1,2]}) is a
Dedekind complete multi-lattice.

Remark

We also see that the particular multi-supremum in this example is
unique.

Remark

msup
i∈I

(xi ,Wi ) is a singleton set if and only if
⋂

i∈I Wi is a cone.
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Losing some vector lattice properties

“Lost in Abstraction”

Besides losing uniqueness of suprema in the venturing from vector
lattices to multi-lattices,

we also lose the inductive property that
vector lattices are closed under finite suprema. Indeed, there exist
multi-wedged spaces that are n-multi-lattices but not
(n + 1)-multi-lattices.
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Proper multi-suprema

Remark

It is of particular interest when the set of multi-suprema is a
singleton set.

In this case we say we have a proper
multi-supremum. For sake of time, we’ll only focus on proper
multi-suprema from now on.
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Multi-wedged spaces of operators

Definition

Let (E ,W) and (F ,V) be multi-wedged spaces.

For W ∈W and
V ∈ V, we say that a map T : E → F is (W ,V )-positive if
T (W ) ⊆ V . We denote by LW ,V (E ,F ) the set of all
(W ,V )-positive operators T : E → F . Also, we set

LW,V(E ,F ) = {LW ,V (E ,F ) : W ∈W,V ∈ V}.

Proposition(
L(E ,F ),LW,V(E ,F )

)
is a multi-wedged space.
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Riesz decomposition property

Remark

Since we wish to obtain Riesz-Kantorovich formulas for
multi-wedged spaces of operators, we need a natural generalization
of the Riesz decomposition property for the multi-wedged setting.
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Riesz decomposition property

Definition

(E ,W) has the (m, n)-Riesz decomposition property if for any
W1, . . . ,Wn ∈W

and any x1, . . . , xm ∈
∑n

j=1Wj and
y1 ∈W1, . . . , yn ∈Wn such that

m∑
i=1

xi =
n∑

j=1

yj ,

there exist zij ∈Wj for which

xi =
n∑

j=1

zij and yj =
m∑
i=1

zij .
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Losing more properties from the classical theory

“Lost in Abstraction”

There exist (Dedekind complete) multi-lattices that do not even
have the (2, 2)-RDP.

“Lost in Abstraction”

There exist multi-wedged spaces that have the (m, n)-RDP but not
the (m, n + 1)-RDP.

Christopher M. Schwanke Riesz-Kantorovich formulas for multi-wedged spaces



Losing more properties from the classical theory

“Lost in Abstraction”

There exist (Dedekind complete) multi-lattices that do not even
have the (2, 2)-RDP.

“Lost in Abstraction”

There exist multi-wedged spaces that have the (m, n)-RDP but not
the (m, n + 1)-RDP.

Christopher M. Schwanke Riesz-Kantorovich formulas for multi-wedged spaces



Main theorem

Theorem

Let (E ,W) be a multi-wedged space

and (F ,V ) be an ordered
vector space that is a Dedekind complete multi-lattice. Consider
the multi-wedged space

(
L(E ,F ),LW,{V }(E ,F )

)
. Also consider a

multi-bounded above collection
(
Ti ,LWi ,V (E ,F )

)
i∈I . Assume

E =
∑

i∈I Wi −
∑

i∈I Wi .
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Main theorem continued

Theorem (continued)

If either

(1) |I | ≤ n and (E ,W) has the (2, n)-RDP,

or

(2) the cardinality of I is arbitrary and (E ,W) has the (2, n)-RDP
for every n ∈ N

then for x ∈
∑

i∈I Wi ,

msup
i∈I

(
Ti ,LWi ,V (E ,F )

)
(x) =

sup

{∑
i∈I

Ti (yi ) : (yi )i∈I ∈
⊕
i∈I

Wi ,
∑
i∈I

yi = x

}
.
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Theorem (continued)
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Main theorem continued

Theorem (continued)

In particular, under the assumptions of (1) we have that(
L(E ,F ),LW,{V }(E ,F )

)
is an n-multi-lattice, whereas(

L(E ,F ),LW,{V }(E ,F )
)

is a Dedekind complete multi-lattice
under the assumptions of (2).

(1) |I | ≤ n and (E ,W) has the (2, n)-RDP,

(2) the cardinality of I is arbitrary and (E ,W) has the (2, n)-RDP
for every n ∈ N
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A more general case

Remark

This theorem is also valid even if E 6=
∑

i∈I Wi −
∑

i∈I Wi and
when V is a wedge that is not a cone, but the Riesz-Kantorovich
formulas get a bit unwieldy.
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The End

Thank you for listening!
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