Riesz-Kantorovich formulas for operators on multi-wedged spaces

Christopher M. Schwanke

Department of Mathematics
North-West University

July 20, 2017 Positivity IX University of Alberta

Joint work with Marten Wortel

Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see a new direction on ordered and preordered vector spaces emerge which involves vector spaces equipped with an arbitrary set of wedges.

Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see a new direction on ordered and preordered vector spaces emerge which involves vector spaces equipped with an arbitrary set of wedges.

Definition

For a vector space E, we call a nonempty subset W of E a wedge if $W+W \subseteq W$ and $\lambda W \subseteq W$ for all $0 \leq \lambda \in \mathbb{R}$.

Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see a new direction on ordered and preordered vector spaces emerge which involves vector spaces equipped with an arbitrary set of wedges.

Definition

For a vector space E, we call a nonempty subset W of E a wedge if $W+W \subseteq W$ and $\lambda W \subseteq W$ for all $0 \leq \lambda \in \mathbb{R}$. In this case, (E, W) is called a preordered vector space.

Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see a new direction on ordered and preordered vector spaces emerge which involves vector spaces equipped with an arbitrary set of wedges.

Definition

For a vector space E, we call a nonempty subset W of E a wedge if $W+W \subseteq W$ and $\lambda W \subseteq W$ for all $0 \leq \lambda \in \mathbb{R}$. In this case, (E, W) is called a preordered vector space. A cone K is a wedge that satisfies $K \cap(-K)=\{0\}$.

Introduction

In recent papers by Marcel de Jeu and Miek Messerschmidt, we see a new direction on ordered and preordered vector spaces emerge which involves vector spaces equipped with an arbitrary set of wedges.

Definition

For a vector space E, we call a nonempty subset W of E a wedge if $W+W \subseteq W$ and $\lambda W \subseteq W$ for all $0 \leq \lambda \in \mathbb{R}$. In this case, (E, W) is called a preordered vector space. A cone K is a wedge that satisfies $K \cap(-K)=\{0\}$. In this case (E, K) is called an ordered vector space.

Multi-wedged spaces

Definition

We call a pair (E, \mathcal{W}) a multi-wedged space if E is a vector space and \mathcal{W} is a nonempty set of wedges in E.

Multi-wedged spaces

Definition

We call a pair (E, \mathcal{W}) a multi-wedged space if E is a vector space and \mathcal{W} is a nonempty set of wedges in E.

The idea in the aforementioned work of Marcel de Jeu and Miek Messerschmidt was to extend some classical results for ordered vector spaces to results that hold for special types of multi-wedged spaces.

Andô's theorem

> Theorem (Andô's theorem)
> Let E be a real Banach space ordered by a closed cone K for which $E=K-K$.

Andô's theorem

Theorem (Andô's theorem)
Let E be a real Banach space ordered by a closed cone K for which $E=K-K$. Then there exists a constant $C>0$ such that for every $x \in E$ there exist $y \in K$ and $z \in-K$ for which $x=y+z$ and $\|y\|+\|z\| \leq C\|x\|$.

Andô's theorem extended

Theorem (de Jeu, Messerschmidt)

Let (E, \mathcal{W}) be a multi-wedged space, where E is a Banach space, and let $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed wedges in \mathcal{W} for which every $x \in E$ can be written as an absolutely convergent series $x=\sum_{i \in I} w_{i}$, with $w_{i} \in W_{i}$.

Andô's theorem extended

Theorem (de Jeu, Messerschmidt)

Let (E, \mathcal{W}) be a multi-wedged space, where E is a Banach space, and let $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed wedges in \mathcal{W} for which every $x \in E$ can be written as an absolutely convergent series $x=\sum_{i \in I} w_{i}$, with $w_{i} \in W_{i}$.

Then there exist continuous positively homogeneous maps $\gamma_{i}: E \rightarrow W_{i}$ such that

Andô's theorem extended

Theorem (de Jeu, Messerschmidt)

Let (E, \mathcal{W}) be a multi-wedged space, where E is a Banach space, and let $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed wedges in \mathcal{W} for which every $x \in E$ can be written as an absolutely convergent series $x=\sum_{i \in I} w_{i}$, with $w_{i} \in W_{i}$.

Then there exist continuous positively homogeneous maps $\gamma_{i}: E \rightarrow W_{i}$ such that
(1.) $x=\sum_{i \in I} \gamma_{i}(x)$ for all $x \in E$,

Andô's theorem extended

Theorem (de Jeu, Messerschmidt)

Let (E, \mathcal{W}) be a multi-wedged space, where E is a Banach space, and let $\left\{W_{i}\right\}_{i \in I}$ be a collection of closed wedges in \mathcal{W} for which every $x \in E$ can be written as an absolutely convergent series $x=\sum_{i \in I} w_{i}$, with $w_{i} \in W_{i}$.

Then there exist continuous positively homogeneous maps $\gamma_{i}: E \rightarrow W_{i}$ such that
(1.) $x=\sum_{i \in I} \gamma_{i}(x)$ for all $x \in E$,
(2.) $\sum_{i \in I}\left\|\gamma_{i}(x)\right\| \leq C\|x\|$ for all $x \in E$.

Multi-wedged vector lattices?

A curious mind who is interested in vector lattices and multi-wedged spaces could very well ask if results from vector lattice theory can likewise be extended to certain multi-wedged spaces.

In this talk, we'll focus on extending the Riesz-Kantorovich formulas to the multi-wedged setting.

Theorem (Riesz-Kantorovich formulas)

Suppose (E, W) is a preordered vector space with the Riesz decomposition property, and assume $E=W-W$.

Theorem (Riesz-Kantorovich formulas)

Suppose (E, W) is a preordered vector space with the Riesz decomposition property, and assume $E=W-W$. Let $\left(F, F^{+}\right)$be a Dedekind complete vector lattice.

Theorem (Riesz-Kantorovich formulas)

Suppose (E, W) is a preordered vector space with the Riesz decomposition property, and assume $E=W-W$. Let $\left(F, F^{+}\right)$be a Dedekind complete vector lattice. Then $\left(\mathcal{L}_{b}(E, F), \mathcal{L}_{b}^{+}(E, F)\right)$ is a Dedekind complete vector lattice.

Theorem (Riesz-Kantorovich formulas)

Suppose (E, W) is a preordered vector space with the Riesz decomposition property, and assume $E=W-W$. Let $\left(F, F^{+}\right)$be a Dedekind complete vector lattice. Then $\left(\mathcal{L}_{b}(E, F), \mathcal{L}_{b}^{+}(E, F)\right)$ is a Dedekind complete vector lattice. For $T_{1}, T_{2} \in \mathcal{L}_{b}(E, F)$ and $x \in W$,

$$
\left(T_{1} \vee T_{2}\right)(x)=\sup \left\{T_{1}\left(y_{1}\right)+T_{2}\left(y_{2}\right): y_{1}, y_{2} \in W, y_{1}+y_{2}=x\right\}
$$

Theorem (Riesz-Kantorovich formulas)

Suppose (E, W) is a preordered vector space with the Riesz decomposition property, and assume $E=W-W$. Let $\left(F, F^{+}\right)$be a Dedekind complete vector lattice. Then $\left(\mathcal{L}_{b}(E, F), \mathcal{L}_{b}^{+}(E, F)\right)$ is a Dedekind complete vector lattice. For $T_{1}, T_{2} \in \mathcal{L}_{b}(E, F)$ and $x \in W$,

$$
\left(T_{1} \vee T_{2}\right)(x)=\sup \left\{T_{1}\left(y_{1}\right)+T_{2}\left(y_{2}\right): y_{1}, y_{2} \in W, y_{1}+y_{2}=x\right\}
$$

Note the importance of the RDP.

Our first step

Our first step in obtaining multi-wedged Riesz-Kantorovich formulas is to generalize the concept of suprema in ordered vector spaces to the multi-wedged setting.

A geometrical interpretation of suprema

Remark

For an ordered vector space (E, K) and a collection $\left(x_{i}\right)_{i \in I}$ in E,

A geometrical interpretation of suprema

Remark

For an ordered vector space (E, K) and a collection $\left(x_{i}\right)_{i \in I}$ in E, it is true that $z=\sup \left\{x_{i}\right\}$ $i \in I$

A geometrical interpretation of suprema

Remark

For an ordered vector space (E, K) and a collection $\left(x_{i}\right)_{i \in I}$ in E, it is true that $z=\sup \left\{x_{i}\right\}$ if and only if $\bigcap_{i \in I}\left(x_{i}+K\right)=z+K$. $i \in I$

A geometrical interpretation of suprema

A geometrical interpretation of suprema

Generalized suprema

Remark

If (E, \mathcal{W}) is a multi-wedged space and $\left(x_{i}, W_{i}\right)_{i \in I}$ is a collection in
$E \times \mathcal{W}$

Generalized suprema

Remark

If (E, \mathcal{W}) is a multi-wedged space and $\left(x_{i}, W_{i}\right)_{i \in I}$ is a collection in
$E \times \mathcal{W}$ then any $z \in E$ that satisfies

$$
\bigcap_{i \in I}\left(x_{i}+W_{i}\right)=z+\bigcap_{i \in I} W_{i}
$$

Generalized suprema

Remark

If (E, \mathcal{W}) is a multi-wedged space and $\left(x_{i}, W_{i}\right)_{i \in I}$ is a collection in $E \times \mathcal{W}$ then any $z \in E$ that satisfies

$$
\bigcap_{i \in I}\left(x_{i}+W_{i}\right)=z+\bigcap_{i \in I} W_{i}
$$

can be viewed as a generalized supremum of $\left(x_{i}, W_{i}\right)_{i \in I}$.

Generalized suprema

Generalized suprema

Generalized suprema

Multi-suprema

Definition

We refer to a generalized suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ as a multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$.

Multi-suprema

Definition

We refer to a generalized suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ as a multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$. The set of all multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ is denoted $\operatorname{msup}\left(x_{i}, W_{i}\right)$.

$$
i \in I
$$

Multi-suprema

Definition

We refer to a generalized suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ as a multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$. The set of all multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ is denoted $\operatorname{msup}\left(x_{i}, W_{i}\right)$.

$$
i \in I
$$

Remark

In order for such a set of multi-suprema to be nonempty, $\left(x_{i}, W_{i}\right)_{i \in I}$ must be multi-bounded above,

Multi-suprema

Definition

We refer to a generalized suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ as a multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$. The set of all multi-suprema of $\left(x_{i}, W_{i}\right)_{i \in I}$ is denoted $\operatorname{msup}\left(x_{i}, W_{i}\right)$.

$$
i \in I
$$

Remark

In order for such a set of multi-suprema to be nonempty, $\left(x_{i}, W_{i}\right)_{i \in I}$ must be multi-bounded above, meaning that $\bigcap_{i \in I}\left(x_{i}+W_{i}\right) \neq \varnothing$.

Generalized vector lattices

Definition

Multi-wedged spaces in which $\operatorname{msup}\left(x_{i}, W_{i}\right) \neq \varnothing$ for all $i \in I$
multi-bounded above collections $\left(x_{i}, W_{i}\right)_{i \in I}$ with $|I| \leq \kappa$ are called κ-multi-lattices.

Generalized vector lattices

Definition

Multi-wedged spaces in which $\operatorname{msup}\left(x_{i}, W_{i}\right) \neq \varnothing$ for all $i \in I$
multi-bounded above collections $\left(x_{i}, W_{i}\right)_{i \in I}$ with $|I| \leq \kappa$ are called κ-multi-lattices.

Definition

Dedekind complete multi-lattices are multi-wedged spaces that are κ-multi-lattices for any cardinal number κ.

Example 1

Example

Consider the vector space $E=\mathbb{R}^{[0,2]}$.

Example 1

Example

Consider the vector space $E=\mathbb{R}^{[0,2]}$. Define

$$
W_{[0,1]}=\{f \in E: f(x) \geq 0 \text { for all } x \in[0,1]\}
$$

Example 1

Example

Consider the vector space $E=\mathbb{R}^{[0,2]}$. Define
$W_{[0,1]}=\{f \in E: f(x) \geq 0$ for all $x \in[0,1]\}$, and
$W_{(1,2]}=\{f \in E: f(x) \geq 0$ for all $x \in(1,2]\}$.

Example 1 continued

Find $\operatorname{msup}\left(\left(f_{1}, W_{[0,1]}\right),\left(f_{2}, W_{[0,1]}\right),\left(f_{3}, W_{(1,2]}\right),\left(f_{4}, W_{(1,2]}\right)\right)$.

Example 1 continued

$$
\begin{aligned}
& \operatorname{msup}\left(\left(f_{1}, W_{[0,1]}\right),\left(f_{2}, W_{[0,1]}\right),\left(f_{3}, W_{(1,2]}\right),\left(f_{4}, W_{(1,2]}\right)\right)
\end{aligned}
$$

Example 1 continued

Remark

We can infer from this example that $\left(\mathbb{R}^{[0,2]},\left\{W_{[0,1]}, W_{(1,2]}\right\}\right)$ is a Dedekind complete multi-lattice.

Example 1 continued

Remark

We can infer from this example that $\left(\mathbb{R}^{[0,2]},\left\{W_{[0,1]}, W_{(1,2]}\right\}\right)$ is a Dedekind complete multi-lattice.

Remark

We also see that the particular multi-supremum in this example is unique.

Example 1 continued

Remark

We can infer from this example that $\left(\mathbb{R}^{[0,2]},\left\{W_{[0,1]}, W_{(1,2]}\right\}\right)$ is a Dedekind complete multi-lattice.

Remark

We also see that the particular multi-supremum in this example is unique.

Remark

$\operatorname{msup}\left(x_{i}, W_{i}\right)$ is a singleton set if and only if $\bigcap_{i \in I} W_{i}$ is a cone. $i \in I$

Losing some vector lattice properties

"Lost in Abstraction"

Besides losing uniqueness of suprema in the venturing from vector lattices to multi-lattices,

Losing some vector lattice properties

"Lost in Abstraction"

Besides losing uniqueness of suprema in the venturing from vector lattices to multi-lattices, we also lose the inductive property that vector lattices are closed under finite suprema.

Losing some vector lattice properties

"Lost in Abstraction"

Besides losing uniqueness of suprema in the venturing from vector lattices to multi-lattices, we also lose the inductive property that vector lattices are closed under finite suprema. Indeed, there exist multi-wedged spaces that are n-multi-lattices but not ($n+1$)-multi-lattices.

Proper multi-suprema

Remark

It is of particular interest when the set of multi-suprema is a singleton set.

Proper multi-suprema

Remark

It is of particular interest when the set of multi-suprema is a singleton set. In this case we say we have a proper multi-supremum.

Proper multi-suprema

Remark

It is of particular interest when the set of multi-suprema is a singleton set. In this case we say we have a proper multi-supremum. For sake of time, we'll only focus on proper multi-suprema from now on.

Multi-wedged spaces of operators

Definition

Let (E, \mathcal{W}) and (F, \mathcal{V}) be multi-wedged spaces.

Multi-wedged spaces of operators

Definition

Let (E, \mathcal{W}) and (F, \mathcal{V}) be multi-wedged spaces. For $\mathcal{W} \in \mathcal{W}$ and $V \in \mathcal{V}$, we say that a map $T: E \rightarrow F$ is (W, V)-positive if $T(W) \subseteq V$.

Multi-wedged spaces of operators

Definition

Let (E, \mathcal{W}) and (F, \mathcal{V}) be multi-wedged spaces. For $\mathcal{W} \in \mathcal{W}$ and $V \in \mathcal{V}$, we say that a map $T: E \rightarrow F$ is (W, V)-positive if $T(W) \subseteq V$. We denote by $\mathcal{L}_{W, V}(E, F)$ the set of all (W, V)-positive operators $T: E \rightarrow F$.

Multi-wedged spaces of operators

Definition

Let (E, \mathcal{W}) and (F, \mathcal{V}) be multi-wedged spaces. For $\mathcal{W} \in \mathcal{W}$ and $V \in \mathcal{V}$, we say that a map $T: E \rightarrow F$ is (W, V)-positive if $T(W) \subseteq V$. We denote by $\mathcal{L}_{W, V}(E, F)$ the set of all (W, V)-positive operators $T: E \rightarrow F$. Also, we set

$$
\mathcal{L}_{\mathcal{W}, \mathcal{V}}(E, F)=\left\{\mathcal{L}_{W, V}(E, F): W \in \mathcal{W}, V \in \mathcal{V}\right\} .
$$

Multi-wedged spaces of operators

Definition

Let (E, \mathcal{W}) and (F, \mathcal{V}) be multi-wedged spaces. For $\mathcal{W} \in \mathcal{W}$ and $V \in \mathcal{V}$, we say that a map $T: E \rightarrow F$ is (W, V)-positive if $T(W) \subseteq V$. We denote by $\mathcal{L}_{W, V}(E, F)$ the set of all (W, V)-positive operators $T: E \rightarrow F$. Also, we set

$$
\mathcal{L}_{\mathcal{W}, \mathcal{V}}(E, F)=\left\{\mathcal{L}_{W, V}(E, F): W \in \mathcal{W}, V \in \mathcal{V}\right\} .
$$

Proposition

$\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W}, \mathcal{V}}(E, F)\right)$ is a multi-wedged space.

Riesz decomposition property

Remark

Since we wish to obtain Riesz-Kantorovich formulas for multi-wedged spaces of operators, we need a natural generalization of the Riesz decomposition property for the multi-wedged setting.

Riesz decomposition property

Definition
 (E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$

Riesz decomposition property

Definition

(E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$ and any $x_{1}, \ldots, x_{m} \in \sum_{j=1}^{n} W_{j}$

Riesz decomposition property

Definition
 (E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$ and any $x_{1}, \ldots, x_{m} \in \sum_{j=1}^{n} W_{j}$ and
 $y_{1} \in W_{1}, \ldots, y_{n} \in W_{n}$

Riesz decomposition property

Definition

(E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$ and any $x_{1}, \ldots, x_{m} \in \sum_{j=1}^{n} W_{j}$ and
$y_{1} \in W_{1}, \ldots, y_{n} \in W_{n}$ such that

$$
\sum_{i=1}^{m} x_{i}=\sum_{j=1}^{n} y_{j}
$$

Riesz decomposition property

Definition

(E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$ and any $x_{1}, \ldots, x_{m} \in \sum_{j=1}^{n} W_{j}$ and
$y_{1} \in W_{1}, \ldots, y_{n} \in W_{n}$ such that

$$
\sum_{i=1}^{m} x_{i}=\sum_{j=1}^{n} y_{j}
$$

there exist $z_{i j} \in W_{j}$ for which

Riesz decomposition property

Definition

(E, \mathcal{W}) has the (m, n)-Riesz decomposition property if for any $W_{1}, \ldots, W_{n} \in \mathcal{W}$ and any $x_{1}, \ldots, x_{m} \in \sum_{j=1}^{n} W_{j}$ and
$y_{1} \in W_{1}, \ldots, y_{n} \in W_{n}$ such that

$$
\sum_{i=1}^{m} x_{i}=\sum_{j=1}^{n} y_{j}
$$

there exist $z_{i j} \in W_{j}$ for which

$$
x_{i}=\sum_{j=1}^{n} z_{i j} \quad \text { and } \quad y_{j}=\sum_{i=1}^{m} z_{i j}
$$

Losing more properties from the classical theory

"Lost in Abstraction"

There exist (Dedekind complete) multi-lattices that do not even have the (2, 2)-RDP.

Losing more properties from the classical theory

"Lost in Abstraction"

There exist (Dedekind complete) multi-lattices that do not even have the (2, 2)-RDP.
"Lost in Abstraction"
There exist multi-wedged spaces that have the (m, n)-RDP but not the $(m, n+1)-R D P$.

Main theorem

Theorem
 Let (E, \mathcal{W}) be a multi-wedged space

Main theorem

Theorem

Let (E, \mathcal{W}) be a multi-wedged space and (F, V) be an ordered vector space that is a Dedekind complete multi-lattice.

Main theorem

Theorem

Let (E, \mathcal{W}) be a multi-wedged space and (F, V) be an ordered vector space that is a Dedekind complete multi-lattice. Consider the multi-wedged space $\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W},\{V\}}(E, F)\right)$.

Main theorem

Theorem

Let (E, \mathcal{W}) be a multi-wedged space and (F, V) be an ordered vector space that is a Dedekind complete multi-lattice. Consider the multi-wedged space $\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W},\{V\}}(E, F)\right)$. Also consider a multi-bounded above collection $\left(T_{i}, \mathcal{L}_{W_{i}, V}(E, F)\right)_{i \in I}$.

Main theorem

Theorem

Let (E, \mathcal{W}) be a multi-wedged space and (F, V) be an ordered vector space that is a Dedekind complete multi-lattice. Consider the multi-wedged space $\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W},\{V\}}(E, F)\right)$. Also consider a multi-bounded above collection $\left(T_{i}, \mathcal{L}_{W_{i}, V}(E, F)\right)_{i \in I}$. Assume $E=\sum_{i \in I} W_{i}-\sum_{i \in I} W_{i}$.

Main theorem continued

Theorem (continued)
 If either
 (1) $|I| \leq n$ and (E, \mathcal{W}) has the $(2, n)-R D P$,

Main theorem continued

Theorem (continued)

If either

(1) $|I| \leq n$ and (E, \mathcal{W}) has the $(2, n)-R D P$, or
(2) the cardinality of I is arbitrary and (E, \mathcal{W}) has the $(2, n)-R D P$ for every $n \in \mathbb{N}$

Main theorem continued

Theorem (continued)

If either

(1) $|I| \leq n$ and (E, \mathcal{W}) has the $(2, n)-R D P$, or
(2) the cardinality of I is arbitrary and (E, \mathcal{W}) has the $(2, n)-R D P$ for every $n \in \mathbb{N}$
then for $x \in \sum_{i \in I} W_{i}$,

Main theorem continued

Theorem (continued)

If either

(1) $|I| \leq n$ and (E, \mathcal{W}) has the $(2, n)-R D P$, or
(2) the cardinality of I is arbitrary and (E, \mathcal{W}) has the $(2, n)-R D P$ for every $n \in \mathbb{N}$
then for $x \in \sum_{i \in I} W_{i}$,

$$
\begin{gathered}
\operatorname{msup}_{i \in I}\left(T_{i}, \mathcal{L}_{W_{i}, V}(E, F)\right)(x)= \\
\sup \left\{\sum_{i \in I} T_{i}\left(y_{i}\right):\left(y_{i}\right)_{i \in I} \in \bigoplus_{i \in I} W_{i}, \sum_{i \in I} y_{i}=x\right\}
\end{gathered}
$$

Main theorem continued

Theorem (continued)

In particular, under the assumptions of (1) we have that $\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W},\{V\}}(E, F)\right)$ is an n-multi-lattice, whereas $\left(\mathcal{L}(E, F), \mathcal{L}_{\mathcal{W},\{V\}}(E, F)\right)$ is a Dedekind complete multi-lattice under the assumptions of (2).
(1) $|I| \leq n$ and (E, \mathcal{W}) has the $(2, n)$-RDP,
(2) the cardinality of I is arbitrary and (E, \mathcal{W}) has the $(2, n)$-RDP for every $n \in \mathbb{N}$

A more general case

Remark

This theorem is also valid even if $E \neq \sum_{i \in I} W_{i}-\sum_{i \in I} W_{i}$ and when V is a wedge that is not a cone, but the Riesz-Kantorovich formulas get a bit unwieldy.

Acknowledgement

Acknowledgment
 This research was partially funded by the Claude Leon Foundation and by the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS).

Thank you for listening!

