Positivity IX, University of Alberta, Edmonton, July 16-21, 2017

(Pre-)Duals of the space of integral operators

Anton R. Schep

- Introduction
- The case $E=F=L^{p}$
- Duality for the case $E=F=L^{p}$
- Positive Projective Tensor Product
- The case of more general E and F
- The (pre-)dual of the band $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$
- Factorization

Definitions and notations

(X, Σ, μ) is a complete σ-finite measure space.
Let E and F be Banach function spaces on (X, Σ, μ). By E^{*} we denote the Banach space dual of E and by E^{\prime} the associate space of E (also known as the Köthe dual or order continuous dual E^{\prime}). It is well-known that the band $\left(E^{\prime} \otimes F\right)^{d d}$, generated by the order continuous finite rank operators in $\mathcal{L}_{r}(E, F)$, is equal to the collection of all regular (non-singular) integral operators from E into F. We will frequently identify the operators with their kernels and consider $\left(E^{\prime} \otimes F\right)^{d d}$ as a Banach function space. We will write $T_{1} \cdot T_{2}$ to denote the pointwise product of the kernels of T_{1} and T_{2}.
Main Problem of the talk: Describe the kernels of elements of $\left(E^{\prime} \otimes F\right)^{d d}$ and also the elements of its associate space $\left(\left(E^{\prime} \otimes F\right)^{d d}\right)^{\prime}$.

Integral operators on L^{p}

It is clear that $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$ with the regular norm is a Banach function space on $X \times X$ with the Fatou property. For a measurable function f on $X \times X$ we define for $1 \leq p<\infty$ the norm $\|F\|_{\infty, p}$ as follows

$$
\|f\|_{\infty, p}=\left\|\left(\int|f(x, y)|^{p} d y\right)^{\frac{1}{p}}\right\|_{\infty} .
$$

We denote

$$
L_{\infty, p}=\left\{f \in L_{0}(X \times X):\|f\|_{\infty, p}<\infty\right\}
$$

Given f on $X \times X$ we define the transpose of f by
$f^{t}(x, y)=f(y, x)$. Then $L_{\infty, p}^{t}$ will denote the collection of all f such that $f^{t} \in L_{\infty, p}$ and the norm on $L_{\infty, p}^{t}$ will be defined by $\left\|f^{t}\right\|_{\infty, p}$.

Theorem

Let $1<p<\infty$. Then $L_{\infty, p^{\prime}} \cdot L_{\infty, p}^{t}$ is a product Banach function space isometrically equal to $\left(L^{p^{\prime}} \otimes L^{p}\right)^{\text {dd }}$ and for any $T \in\left(L^{p^{\prime}} \otimes L^{p}\right)^{\text {dd }}$ we have a factorization $T=T_{1} \cdot T_{2}$ with $\|T\|_{r}=\left\|T_{1}\right\|_{\infty, p^{\prime}}\left\|T_{2}^{t}\right\|_{\infty, p}$.

Sketch of Proof

The inclusion $L_{\infty, p^{\prime}} \cdot L_{\infty, p}^{t} \subset\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$ is a consequence of Hölder's inequality. Now let $T \in\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$. Then we can assume that $0 \leq T$ and $\|T\|=1$. Let $\epsilon>0$. Then by Gagliardo's converse of the Schur test for positive linear operators there exists $0<f_{0} \in L_{p}$ with $\left\|f_{0}\right\|_{p}=1$ such that
$T^{*}\left(T f_{0}\right)^{p-1} \leq(1+\epsilon) f_{0}^{p-1}$. Define now
$T_{1}(x, y)=T(x, y)^{\frac{1}{p^{\prime}}} f_{0}(y)^{\frac{1}{p^{\prime}}}\left(T f_{0}(x)\right)^{-\frac{1}{p^{\prime}}}$ and
$T_{2}(x, y)=T(x, y)^{\frac{1}{p}} f_{0}(y)^{-\frac{1}{p^{\prime}}}\left(T f_{0}(x)\right)^{\frac{1}{p^{\prime}}}$. Then clearly
$T(x, y)=T_{1}(x, y) T_{2}(x, y)$. Moreover

$$
\int T_{1}(x, y)^{p^{\prime}} d \mu(y)=T f_{0}(x)\left(T f_{0}(x)\right)^{-1}=1 \text { a.e. }
$$

and

$$
\int T_{2}(x, y)^{p} d \mu(x)=T^{*}\left(T f_{0}\right)^{p-1}(y) \cdot f_{0}(y)^{1-p} \leq 1+\epsilon \text { a.e. }
$$

This shows that $T_{1} \in L_{\infty, p^{\prime}}$ and $T_{2}^{t} \in L_{\infty, p}^{p}$ and
$\left\|T_{1}\right\|_{\infty, p^{\prime}}\left\|T_{2}^{t}\right\|_{\infty, p} \leq 1+\epsilon$. Hence $\|T\|_{r}=\inf \left\{\left\|T_{1}\right\|_{\infty, p^{\prime}}\left\|T_{2}^{t}\right\|_{\infty, p}:\right.$ $\left.|T(x, y)|=\left|T_{1}(x, y) T_{2}(x, y)\right|, T_{1} \in L_{\infty, p^{\prime}}, T_{2}^{t} \in L_{\infty, p}^{t}\right\}$. This shows that $L_{\infty, p^{\prime}} \cdot L_{\infty, p}^{t}$ is a product Banach function space isometrically equal to $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$. That the infimum is a minimum follows from one of our theorems on Cesaro convergence and Komlos' Theorem.

This shows that $T_{1} \in L_{\infty, p^{\prime}}$ and $T_{2}^{t} \in L_{\infty, p}^{p}$ and
$\left\|T_{1}\right\|_{\infty, p^{\prime}}\left\|T_{2}^{t}\right\|_{\infty, p} \leq 1+\epsilon$. Hence $\|T\|_{r}=\inf \left\{\left\|T_{1}\right\|_{\infty, p^{\prime}}\left\|T_{2}^{t}\right\|_{\infty, p}:\right.$ $\left.|T(x, y)|=\left|T_{1}(x, y) T_{2}(x, y)\right|, T_{1} \in L_{\infty, p^{\prime}}, T_{2}^{t} \in L_{\infty, p}^{t}\right\}$. This shows that $L_{\infty, p^{\prime}} \cdot L_{\infty, p}^{t}$ is a product Banach function space isometrically equal to $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$. That the infimum is a minimum follows from one of our theorems on Cesaro convergence and Komlos' Theorem.
Remark: One can rewrite the above factorization as $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}=\left(L_{\infty, 1}\right)^{\frac{1}{p^{\prime}}}\left(L_{\infty, 1}^{t}\right)^{\frac{1}{p}}$. In this form the above theorem is a version of Pisier's result (1994) that
$\mathcal{L}_{r}\left(\ell_{p}(n)\right)=\mathcal{L}\left(\ell_{\infty}(n)\right)^{\frac{1}{p^{\prime}}} \mathcal{L}\left(\ell_{1}(n)\right)^{\frac{1}{p}}$. Pisier 's result was already partially anticipated by Akcoglu, Baxter and Lee (1991).

The Associate space $\left(\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}\right)^{\prime}$

Form Lozanovskii's duality theorem we get
$\left(\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}\right)^{\prime}=\left(L_{\infty, 1}^{\prime}\right)^{\frac{1}{p^{\prime}}}\left(\left(L_{\infty, 1}^{t}\right)^{\prime}\right)^{\frac{1}{p}}=\left(L_{1, \infty}\right)^{\frac{1}{p^{\prime}}}\left(L_{1, \infty}^{t}\right)^{\frac{1}{p}}=L_{p^{\prime}, \infty} L_{p, \infty}^{t}$.
Let $\mathcal{K}_{r}\left(L^{p}\right)$ denote the closure of $L^{p^{\prime}} \otimes L^{p}$ in $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$. Then $\mathcal{K}_{r}\left(L^{p}\right)$ consists exactly of the elements of order continuous norm in $\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}$, so also $\left(\mathcal{K}_{r}\left(L^{p}\right)\right)^{*}=L_{p^{\prime}, \infty} L_{p, \infty}^{t}$.

Connection to the positive projective tensor product

 Recall that the positive projective tensor product $L^{p^{\prime}} \hat{\otimes}_{|\pi|} L^{p}$ is the completion of the Riesz subspace generated by $L^{p^{\prime}} \otimes L^{p}$ with respect to the norm$$
\|f\|_{|\pi|}=\inf \left\{\|g\|_{p^{\prime}}\|h\|_{p}:|f| \leq g \otimes h\right\} .
$$

Let $\mathcal{F}_{r}\left(L^{p}\right)$ denote the ideal generated by $L^{p^{\prime}} \otimes L^{p}$ with the norm $\|\cdot\|_{|\pi|}$.
Theorem
$\mathcal{F}_{r}\left(L^{p}\right)$ is a Banach function space with the Fatou property.
Corollary
$\mathcal{F}_{r}\left(L^{p}\right)=\left(\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}\right)^{\prime}=\mathcal{K}_{r}\left(L^{p}\right)^{*}=L_{p^{\prime}, \infty} L_{p, \infty}^{t}$.

The case of more general E and F

The positive (Fremlin) projective tensor product

Let now E and F be Banach function spaces. Then the positive projective tensor product $E \hat{\otimes}_{|\pi|} F$ is the completion of the Riesz subspace generated by $E \otimes F$ with respect to the norm

$$
\|f\|_{|\pi|}=\inf \left\{\sum_{k=1}^{n}\left\|g_{k}\right\|_{E}\left\|h_{k}\right\|_{F}:|f| \leq \sum_{k=1}^{n} g_{k} \otimes h_{k}\right\}
$$

Fremlin proved for $X=[0,1]$ with Lebesgue measure:

1. $L^{1} \hat{\otimes}_{|\pi|} L^{1}=L^{1}\left([0,1]^{2}\right)$.
2. $L^{2} \hat{\otimes}_{|\pi|} L^{2}$ has a Fatou norm (i.e. a l.s.c. norm), but is not Dedekind complete.
3. $C\left(K_{1}\right) \hat{\otimes}_{|\pi|} C\left(K_{2}\right)=C\left(K_{1} \times K_{2}\right)$.

The case of more general E and F

Order Completeness

Here we collect some additional old and new facts about the Dedekind completeness of $E \hat{\otimes}_{|\pi|} F$.

1. $\ell^{\infty} \hat{\otimes}_{|\pi|} \ell^{\infty}$ is not Dedekind complete. Reason: $\ell^{\infty}=C(\beta \mathbb{N})$, so $\ell^{\infty} \hat{\otimes}_{|\pi|} \ell^{\infty}=C(\beta \mathbb{N} \times \beta \mathbb{N})$, by item 3 of the previous slide. Now it is well-known that $\beta \mathbb{N} \times \beta \mathbb{N}$ is not Stonian (look at the closure of $\mathbb{N} \times \mathbb{N}$ in $\beta \mathbb{N} \times \beta \mathbb{N}$). In fact:
2. If K_{1} and K_{2} Stonian compact Hausdorff spaces, then $K_{1} \times K_{2}$ is Stonian $\Longleftrightarrow K_{1}$ or K_{2} is finite, i.e., $C\left(K_{1}\right) \hat{\otimes}_{|\pi|} C\left(K_{2}\right)$ is Dedekind complete implies that K_{1} or K_{2} is finite.
3. For $X=[0,1]$ with Lebesgue measure, $L^{p} \hat{\otimes}_{|\pi|} L^{q}$, $1<q \leq p<\infty$, is not Dedekind complete.

The case of more general E and F

The space $E \hat{\otimes}_{|\pi|} F$

Recall that E is called p-convex for $1 \leq p \leq \infty$ if there exists a constant M such that for all $f_{1}, \ldots, f_{n} \in E$

$$
\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{p}\right)^{\frac{1}{p}}\right\|_{E} \leq M\left(\sum_{k=1}^{n}\left\|f_{k}\right\|_{E}^{p}\right)^{\frac{1}{p}} \text { if } 1 \leq p<\infty
$$

or $\left\|\sup \left|f_{k}\right|\right\|_{E} \leq M \cdot \max _{1 \leq k \leq n}\left\|f_{k}\right\|_{E}$ if $p=\infty$. Similarly E is called p-concave for $1 \leq p \leq \infty$ if there exists a constant M such that for all $f_{1}, \ldots, f_{n} \in E$

$$
\left(\sum_{k=1}^{n}\left\|f_{k}\right\|_{E}^{p}\right)^{\frac{1}{p}} \leq M\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{p}\right)^{\frac{1}{p}}\right\|_{E} \text { if } 1 \leq p<\infty
$$

and $\max _{1 \leq k \leq n}\left\|f_{k}\right\|_{E} \leq M \cdot\left\|\sup \left|f_{k}\right|\right\|_{E}$ if $p=\infty$.

The case of more general E and F

Fatou properties

Theorem
Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then for all $f \in E \hat{\otimes}_{|\pi|} F$

$$
\|f\|_{|\pi|}=\inf \left\{\|g\|_{E}\|h\|_{F}:|f| \leq g \otimes h\right\} .
$$

Theorem
Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with with convexity constants equal to 1 , then $E \hat{\otimes}_{|\pi|} F$ has a Fatou norm (i.e., the norm is lower semi-continuous).

In fact we have slightly more:
Theorem
Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then $0 \leq f_{n}(x, y) \uparrow$ in $E \hat{\otimes}_{|\pi|} F$ with sup $\left\|f_{n}\right\|_{|\pi|}=1$ implies that there exists $0 \leq g \in E$ and $0 \leq h \in F$ such that $f_{n} \leq g \otimes h$ for all n and $\|g \otimes h\|_{|\pi|}=1$.

In fact we have slightly more:
Theorem
Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then $0 \leq f_{n}(x, y) \uparrow$ in $E \hat{\otimes}_{|\pi|} F$ with sup $\left\|f_{n}\right\|_{|\pi|}=1$ implies that there exists $0 \leq g \in E$ and $0 \leq h \in F$ such that $f_{n} \leq g \otimes h$ for all n and $\|g \otimes h\|_{|\pi|}=1$.
As in the L^{p} case we now consider the ideal $\mathcal{F}_{r}(E, F)$ generated by $E \hat{Q}_{|\pi|} F$ with the norm

$$
\|f\|_{|\pi|}=\inf \left\{\|g\|_{E}\|h\|_{F}:|f| \leq g \otimes h\right\} .
$$

Theorem

Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then the ideal $\mathcal{F}_{r}(E, F)$ generated by $E \hat{\otimes}_{|\pi|} F$ with the above norm has the Fatou property. In particular $\mathcal{F}_{r}(E, F)$ is a Banach function space.
We now recall some general duality facts. The dual space of $E \hat{\otimes}_{|\pi|} F$ is the Banach lattice $\mathcal{L}_{r}\left(E, F^{*}\right)$ of all regular operators from E into F^{*}. The conditions that E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$, imply that F^{*} is q^{\prime} concave and that $q^{\prime} \leq p$.

The (pre-)dual of the band $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$

An easy consequence of the previous result is:

Theorem

Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then the associate space $\mathcal{F}_{r}(E, F)^{\prime}$ of the Banach function space $\mathcal{F}_{r}(E, F)$ is isometric with the band of $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$ of regular integral operators from E into F^{\prime}.
To get a more explicit description of the kernels of the regular integral operators from E into F^{\prime} we identify $\mathcal{F}_{r}(E, F)$ as a Calderon-Lozanovskii space. For a measurable function f on $X \times X$ we define the norm $\|f\|_{E, \infty}$ as follows

$$
\|f\|_{E, \infty}=\| \| f_{x}(\cdot)\left\|_{\infty}\right\|_{E} .
$$

We denote

$$
L_{E, \infty}=\left\{f \in L_{0}(X \times X):\|f\|_{E, \infty}<\infty\right\} .
$$

Given f on $X \times X$ we define as before the transpose of f by $f^{t}(x, y)=f(y, x)$. Then $L_{F, \infty}^{t}$ will denote the collection of all f such that $f^{t} \in L_{F, \infty}$ and the norm on $L_{F, \infty}^{t}$ will be defined by $\left\|f^{t}\right\|_{F, \infty}$. With this notations we have
Theorem
Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 , then $\mathcal{F}_{r}(E, F)=L_{E, \infty} \cdot L_{F, \infty}^{t}$ (as a pointwise product Banach function space).

Corollary

Let E and F be as in the above theorem. Then the band $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$ of regular integral operators from E into F^{\prime} is equal to $\left(L_{E, \infty} \cdot L_{F, \infty}^{t}\right)^{\prime}$.

The (pre-)dual of the band $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$

What is $\left(L_{E, \infty} \cdot L_{F, \infty}^{t}\right)^{\prime}$?
Our first description is a corollary of a proposition of my paper on product BFS.

Theorem

Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 . Then

$$
\left(E^{\prime} \otimes F^{\prime}\right)^{d d}=M\left(L_{E, \infty}\left(L_{F, \infty}^{t}\right)^{\prime}\right)=M\left(L_{F, \infty}^{t}\left(L_{E, \infty}\right)^{\prime}\right) .
$$

To find the associate spaces of those mixed norm spaces we recall a result (unpublished?) of Wim Luxemburg.

Theorem

Let ρ_{1}, ρ_{2} be Banach function norms and assume ρ_{2} has the Fatou property. Then

$$
\left(\rho_{1} \circ \rho_{2}\right)^{\prime}=\rho_{1}^{\prime} \circ \rho_{2}^{\prime} .
$$

From Luxemburg's result we see that $\left(L_{F, \infty}^{t}\right)^{\prime}=L_{F^{\prime}, 1}^{t}$ and $\left.L_{E, \infty}\right)^{\prime}=L_{E^{\prime}, 1}$. Therefore we have

Theorem

Assume E is p-convex and F is q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 . Then

$$
\left(E^{\prime} \otimes F^{\prime}\right)^{d d}=M\left(L_{E, \infty}, L_{F^{\prime}, 1}^{t}\right)=M\left(L_{F, \infty}^{t}, L_{E^{\prime}, 1}\right)
$$

In practice this description is not that useful and doesn't recover the $E=F=L^{p}$ case, mentioned earlier. An inspection of that earlier case shows that the p-concavication was used. Recall if E is p-convex with $p>1$ and convexity constant equal to 1 , then the p-concavication E^{p} is the Banach function space consisting of measurable functions f with $|f|^{p} \in E$ and norm

$$
\|f\|_{E^{p}}=\left\||f|^{p}\right\|_{E}^{\frac{1}{p}}
$$

The Calderon-Lozanovski space description

Theorem
Let E be p-convex and F be q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$ and with convexity constants equal to 1 . Then
$\mathcal{F}_{r}(E, F)=\left(L_{E^{p}, \infty}\right)^{\frac{1}{p}} \cdot\left(L_{F p^{\prime}, \infty}^{t}\right)^{\frac{1}{p^{\prime}}}=\left(L_{E q^{\prime}, \infty}\right)^{\frac{1}{q^{\prime}}} \cdot\left(L_{F q, \infty}^{t}\right)^{\frac{1}{q}}$
Corollary
Let E and F be as in the above theorem. Then the band $\left(E^{\prime} \otimes F^{\prime}\right)^{d d}$ of regular integral operators from E into F^{\prime} is equal to

$$
\left(L_{\left(E p^{\prime}\right)^{\prime}, 1}\right)^{\frac{1}{p}} \cdot\left(L_{\left(F p^{\prime}\right)^{\prime}, 1}^{t}\right)^{\frac{1}{p^{p}}}=\left(L_{\left(E^{\prime}\right)^{\prime}, 1}\right)^{\frac{1}{p^{\prime}}} \cdot\left(L_{(F q)^{\prime}, 1}^{t}\right)^{\frac{1}{q}} .
$$

Extrapolation and Interpolation

The last theorem can be viewed as an extrapolation result. Let $0 \leq T: E \rightarrow F^{\prime}$ be an integral operator, where E and F are as above. Then $T=T_{1}^{\frac{1}{p}} \cdot T_{2}^{\frac{1}{p^{\prime}}}$, where $T_{1}: L^{\infty} \rightarrow\left(E^{p}\right)^{\prime}$ and $T_{2}: F^{p^{\prime}} \rightarrow L^{1}$ (and a similar extrapolation involving the $q^{\prime} s$). We have a converse of the previous theorem, by tracing back through the proof.

Theorem

Let E be p-convex and F be q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$. Assume
$T_{1}: L^{\infty} \rightarrow\left(E^{p}\right)^{\prime}$ and $T_{2}: F^{p^{\prime}} \rightarrow L^{1}$ are regular integral operators,
then $T=T_{1}^{\frac{1}{p}} \cdot T_{2}^{\frac{1}{p^{\prime}}}: E \rightarrow F$ is a regular integral operator.

Extrapolation and Interpolation continued

The special case $T=T_{1}=T_{2}$ is an interpolation result.
Corollary
Let E be p-convex and F be q-convex with $\frac{1}{p}+\frac{1}{q} \leq 1$. Assume
$T: L^{\infty} \rightarrow\left(E^{p}\right)^{\prime}$ and $T: F^{p^{\prime}} \rightarrow L^{1}$ are regular integral operators, then
$T: E \rightarrow F$ is a regular integral operator.
Open problem: Can we extend the above extrapolation and interpolation results to arbitrary regular operators?

The special case $E=L^{p}$ and $F=L^{q}$

In this case the condition $\frac{1}{p}+\frac{1}{q}<1$ implies that $1 \leq q^{\prime}<p$, so that the main result describes the band $\left(L^{p^{\prime}} \otimes L^{q^{\prime}}\right)^{d d}$ of regular integral operators from L^{p} into $L^{q^{\prime}}$, where $1 \leq q^{\prime}<p$. In this case $E^{p}=L^{1}$ and $F^{p^{\prime}}=L^{\frac{q}{p^{\prime}}}$ so that $T=T_{1}^{\frac{1}{p}} \cdot T_{2}^{\frac{1}{p^{\prime}}}$, where $T_{1} \in L_{\infty, 1}$ and $T_{2}^{t} \in L_{\infty, \frac{q}{p^{\prime}}}$ or $T_{1}: L^{\infty} \rightarrow L^{\infty}$ and $T_{2}: L^{\frac{q}{p^{\prime}}} \rightarrow L^{1}$.

Factorization of $\mathcal{L}_{r}\left(L^{p}, L^{q^{\prime}}\right)$, where $q^{\prime}<p$

Recall first that the space $M\left(L^{p}, L^{q^{\prime}}\right)$ of bounded multiplication operators from L^{p} into $L^{q^{\prime}}$ can be identified with L^{r}, where $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. Maurey proved that

$$
\mathcal{L}_{r}\left(L^{p}, L^{q^{\prime}}\right)=M\left(L^{p}, L^{q^{\prime}}\right) \circ \mathcal{L}_{r}\left(L^{p}, L^{p}\right) .
$$

Hence also

$$
\left(L^{p^{\prime}} \otimes L^{q^{\prime}}\right)^{d d}=M\left(L^{p}, L^{q^{\prime}}\right) \circ\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d} .
$$

At the level of the kernels this shows that

$$
\left(L^{p^{\prime}} \otimes L^{q^{\prime}}\right)^{d d}=L_{r, \infty} \cdot\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d},
$$

or $M\left(\left(L^{p^{\prime}} \otimes L^{q^{\prime}}\right)^{d d},\left(L^{p^{\prime}} \otimes L^{p}\right)^{d d}\right)=L_{r, \infty}$.

Factorization of integral operators

We discuss now the problem of factorization of integral operators from E into F^{\prime}. It is easy to see that we can factor rank one operators (and thus finite rank operators) from E into F^{\prime} through E, followed by a multiplication operator, if and only if $E \cdot M\left(E, F^{\prime}\right)=F^{\prime}$. As it happens, this is true under almost the exact same hypotheses as before.

Theorem

Let E and F be Banach function spaces such that there exists $1<p<\infty$ such that E is p-convex and F is p^{\prime}-convex with convexity constants equal to 1 and assume E has the Fatou property. Then
$E \cdot M\left(E, F^{\prime}\right)$ is a product Banach function space and
$E \cdot M\left(E, F^{\prime}\right)=F^{\prime}$.

Factorization of integral operators

The result on the previous slide leads to the inclusions:

$$
E^{\prime} \otimes F^{\prime} \subset M\left(E, F^{\prime}\right) \circ\left(E^{\prime} \otimes E\right)^{d d} \subset\left(E^{\prime} \otimes F^{\prime}\right)^{d d} .
$$

We can again replace $M\left(E, F^{\prime}\right) \circ\left(E^{\prime} \otimes E\right)^{d d}$ with
$L_{M\left(E, F^{\prime}\right), \infty} \cdot\left(E^{\prime} \otimes E\right)^{d d}$ and now we have the following open problems:

- Is

$$
L_{M\left(E, F^{\prime}\right), \infty} \cdot\left(E^{\prime} \otimes E\right)^{d d}=\left(E^{\prime} \otimes F^{\prime}\right)^{d d} ?
$$

or

$$
M\left(E, F^{\prime}\right) \circ\left(E^{\prime} \otimes E\right)^{d d}=\left(E^{\prime} \otimes F^{\prime}\right)^{d d} ?
$$

- Is the "factorization norm" on $M\left(E, F^{\prime}\right) \circ\left(E^{\prime} \otimes E\right)^{d d}$ equal to the regular operator norm?
- Is $\mathcal{L}_{r}\left(E, F^{\prime}\right)=M\left(E, F^{\prime}\right) \mathcal{L}_{r}(E, E)$ under the same hypotheses?

Some more open problems

Besides the open problems about factorization we have:

1. Can one describe the integral operators from L^{p} to L^{q}, where $q>p$? Note in this case the operator norm is not order continuous. The case $q=\infty$ is easy. In that case every bounded operator is an integral operator.
2. Is it true that if E and F are p-convex for some $p>1$ and $E \hat{\otimes}_{|\pi|} F$ is Dedekind complete, then E or F is atomic.
